Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Integral relations among Bessel functions


Author: E. O. Schulz-DuBois
Journal: Math. Comp. 23 (1969), 845-847
MSC: Primary 33.25
DOI: https://doi.org/10.1090/S0025-5718-1969-0257426-X
MathSciNet review: 0257426
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Inverse Laplace transformation of seemingly trivial identities is used to derive novel integral relations among ordinary and modified Bessel functions.


References [Enhancements On Off] (What's this?)

  • [1] E. O. Schulz-DuBois, Electromagnetic Propagation in Linear Dispersive Media. (To appear.)
  • [2] A. H. Zemanian, Distribution Theory and Transform Analysis. An Introduction to Generalized Functions, with Applications, McGraw-Hill, New York, 1965, Table B.2, formulae 64, 84, 96. MR 31 #1556. MR 0177293 (31:1556)
  • [3] G. N. Watson, A Treatise on the Theory of Bessel Functions, 2nd ed., Cambridge Univ. Press, New York, and Macmillan, New York, 1944. MR 6, 64. MR 0010746 (6:64a)
  • [4] Y. L. Luke, Integrals of Bessel Functions, McGraw-Hill, New York, 1962. MR 25 #5198. MR 0141801 (25:5198)
  • [5] A. Erdélyi et al., Higher Transcendental Functions, Vol. 2, McGraw-Hill, New York, 1953, pp. 244-245, formulae 31, 35. MR 15, 419.

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 33.25

Retrieve articles in all journals with MSC: 33.25


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1969-0257426-X
Article copyright: © Copyright 1969 American Mathematical Society

American Mathematical Society