A steepest ascent method for the Chebyshev problem

Author:
Marcel Meicler

Journal:
Math. Comp. **23** (1969), 813-817

MSC:
Primary 65.30

DOI:
https://doi.org/10.1090/S0025-5718-1969-0258251-6

MathSciNet review:
0258251

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we present an efficient ascent method for calculating the minimax solution of an overdetermined system of linear equations . The algorithm makes best use of all the information available at each cycle in order to force a very steep path to the solution.

**[1]**T. L. Boullion & P. L. Odell,*An Introduction to the Theory of Generalized Matrix Invertibility*, Texas Center for Research, 1966, p. 120.**[2]**Richard H. Bartels and Gene H. Golub,*Stable numerical methods for obtaining the Chebyshev solution to an overdetermined system of equations*, Comm. ACM**11**(1968), 401–406. MR**0240957**, https://doi.org/10.1145/363347.363364**[3]**E. W. Cheney,*Introduction to approximation theory*, McGraw-Hill Book Co., New York-Toronto, Ont.-London, 1966. MR**0222517****[4]**Randall E. Cline,*Representations for the generalized inverse of a partitioned matrix*, J. Soc. Indust. Appl. Math.**12**(1964), 588–600. MR**0172890****[5]**T. N. E. Greville,*Some applications of the pseudoinverse of a matrix*, SIAM Rev.**2**(1960), 15–22. MR**0110185**, https://doi.org/10.1137/1002004**[6]**D. C. Handscomb (ed.),*Methods of numerical approximation*, Pergamon Press, Oxford-New York-Toronto, Ont., 1966. Lectures delivered at a Summer School held at Oxford University, Oxford, September, 1965. MR**0455292****[7]**Marcel Meicler,*Chebyshev solution of an inconsistent system of 𝑛+1 linear equations in 𝑛 unknowns in terms of its least squares solution*, SIAM Rev.**10**(1968), 373–375. MR**0232783**, https://doi.org/10.1137/1010064**[8]**David Moursund,*Chebyshev solution of 𝑛+1 linear equations in 𝑛 unknowns*, J. Assoc. Comput. Mach.**12**(1965), 383–387. MR**0182139**, https://doi.org/10.1145/321281.321289**[9]**R. Penrose,*A generalized inverse for matrices*, Proc. Cambridge Philos. Soc.**51**(1955), 406–413. MR**0069793**

Retrieve articles in *Mathematics of Computation*
with MSC:
65.30

Retrieve articles in all journals with MSC: 65.30

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1969-0258251-6

Article copyright:
© Copyright 1969
American Mathematical Society