Nonnegative Matrix Equations
Having Positive Solutions

By Jerry A. Walters

Abstract. Suppose \(\bar{A} \) is a nonnegative invertible matrix with a positive diagonal \(D = \text{Diag} (\bar{A}) > 0 \) and \(\bar{y} > 0 \) is a positive vector. Let \(A = D^{-1}\bar{A} \) and \(y = D^{-1}\bar{y} \). If \(0 < 2y - Ay \), then \(2y - Ay \preceq x \preceq y \), where \(x = A^{-1}y \).

Introduction. The inverse \(A^{-1} \) of a given nonnegative invertible matrix, \(A \), will usually contain negative elements; and hence for some \(y > 0 \) the solution vector \(x = A^{-1}y \) will have negative components. As suggested in the abstract there is no loss in generality in assuming \(\text{Diag} (A) = I \). The condition

\[
0 < 2y - Ay
\]

will be shown to imply \(0 < x = A^{-1}y \) and to imply that \(A \) is diagonally similar to the diagonally dominant matrix \(Y^{-1}AY \).

Theorem. Suppose \(\bar{A} \) is a nonnegative invertible matrix with a positive diagonal \(D = \text{Diag} (\bar{A}) > 0 \) and \(\bar{y} > 0 \) is a positive vector. Let \(A = D^{-1}\bar{A} \) and \(y = D^{-1}\bar{y} \). If \(0 < 2y - Ay \), then \(2y - Ay \preceq x \preceq y \), where \(x = A^{-1}y \).

Proof. Let \(B = A - I \) then (1) implies \(0 < (I - B)y \). We wish to show \(2y - Ay \preceq x \preceq y \), i.e. \((I - B)y \preceq (I + B)^{-1}y \preceq y \), i.e. \((I - B)y \preceq (I - B^2)^{-1} (I - B)y \preceq y \). Let \(u \) be the positive vector \(u = (I - B)y \). We wish to show \(u \preceq (I - B^2)^{-1} u \preceq (I - B)^{-1} u \) which will hold provided \((I - B^2)^{-1} \) and \((I - B)^{-1} \) are nonnegative matrices.

These matrices will be nonnegative provided the corresponding matrix series converge, since

\[
I \preceq I + B^2 + B^4 + \cdots \preceq I + B + B^2 + \cdots
\]

implies \(I \preceq (I - B^2)^{-1} \preceq (I - B)^{-1} \).

And the series will converge provided the spectral radius of \(B \) satisfies \(\rho(B) < 1 \). To see that \(\rho(B) < 1 \), we let \(y = Ye \) where \(e \) is the vector having all its components equal to 1 and \(Y \) is the diagonal matrix corresponding to \(y \). Then, \(0 < (I - B)y \) implies \(Y^{-1}BYe < e \) which implies \(\rho(B) = \rho(Y^{-1}BY) < 1 \).

Corollary. The inequality \(Y^{-1}BYe < e \) also implies that the matrix \((I + Y^{-1}BY) = Y^{-1}(I + B)Y \) is diagonally dominant.

Acknowledgment. The author is indebted to the referee for his help.