Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Eberlein measure and mechanical quadrature formulae II. Numerical results


Authors: V. L. N. Sarma and A. H. Stroud
Journal: Math. Comp. 23 (1969), 781-784
MSC: Primary 65.55
DOI: https://doi.org/10.1090/S0025-5718-1969-0258282-6
MathSciNet review: 0258282
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In a previous paper it was shown how a probability measure (Eberlein measure) on the closed unit ball of the sequence space, $ {l_1}$, can be used to find the variance $ {\sigma ^2}$ of the error functional for a quadrature formula for the $ k$-dimensional cube, regarded as a random variable. Here we give values of $ \sigma $ for some specific formulae.


References [Enhancements On Off] (What's this?)

  • [1] J. Albrecht & L. Collatz, ``Zur numerischen Auswertung mehrdimensionaler Integrale,'' Z. Angew. Math. Mech., v. 38, 1958, pp. 1-15. MR 20 #432. MR 0093912 (20:432)
  • [2] W. Burnside, ``An approximate quadrature formula,'' Messenger of Math., v. 37, 1908, pp. 166-167.
  • [3] G. M. Ewing, ``On approximate cubature,'' Amer. Math. Monthly, v. 48, 1941, pp. 134-136. MR 1525068
  • [4] P. C. Hammer & A. H. Stroud, ``Numerical evaluation of multiple integrals. II,'' Math. Tables Aids Comput., v. 12, 1958, pp. 272-280. MR 21 #970. MR 0102176 (21:970)
  • [5] P. C. Hammer & A. W. Wymore, ``Numerical evaluation of multiple integrals. I,'' Math. Tables Aids Comput., v. 11, 1957, pp. 59-67. MR 19, 323. MR 0087220 (19:323a)
  • [6] John Lamperti, Probability, A Survey of the Mathematical Theory, Benjamin, New York, 1966. MR 34 #6812. MR 0206996 (34:6812)
  • [7] J. C. Maxwell, ``On approximate multiple integration between limits of summation,'' Proc. Cambridge Philos. Soc., v. 3, 1877, pp. 39-47.
  • [8] D. Mustard, J. N. Lyness & J. M. Blatt, ``Numerical quadrature in $ n$ dimensions,'' Comput. J., v. 6, 1963/64, pp. 75-87. MR 28 #1762. MR 0158539 (28:1762)
  • [9] I. P. Mysovskih, ``On the construction of cubature formulas for the simplest domains,'' USSR Comput. Math. and Math. Phys., v. 4, 1964, pp. 1-18. (Russian) MR 0160334 (28:3547)
  • [10] J. Radon, ``Zur mechanischen Kubatur,'' Monatsh. Math., v. 52, 1948, pp. 286-300. MR 11, 405. MR 0033206 (11:405b)
  • [11] M. Sadowsky, ``A formula for approximate computation of a triple integral,'' Amer. Math. Monthly, v. 47, 1940, pp. 539-543. MR 2, 62. MR 0002496 (2:62k)
  • [12] V. L. N. Sarma, ``Eberlein measure and mechanical quadrature formulae. I: Basic theory,'' Math. Comp., v. 22, 1968, pp. 607-616. MR 0253559 (40:6773)
  • [13] A. H. Stroud, ``Some fifth degree integration formulas for symmetric regions. II,'' Numer. Math., v. 9, 1967, pp. 460-468. MR 36 #1106. MR 0218017 (36:1106)
  • [14] G. W. Tyler, ``Numerical integration of functions of several variables,'' Canad. J. Math., v. 5, 1953, pp. 393-412. MR 15, 67. MR 0056379 (15:67a)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 65.55

Retrieve articles in all journals with MSC: 65.55


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1969-0258282-6
Article copyright: © Copyright 1969 American Mathematical Society

American Mathematical Society