TABLE ERRATA

444.-Militon Abramowitz \& Irene A. Stegun, Editors, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards, Applied Mathematics Series, No. 55, U. S. Government Printing Office, Washington, D. C., 1964, and all known reprints.
On p. 561, in the right members of Formulas 15.4.8 and 15.4.9 the associated Legendre functions of the first kind, P_{b-1}^{b-a} and P_{b-1}^{a-b}, respectively, should be replaced by those of the second kind, Q_{b-1}^{b-a} and Q_{b-1}^{a-b}, of the respective given arguments.

Henry E. Fettis
Applied Mathematics Laboratory
Aerospace Research Laboratories
Wright-Patterson Air Force Base, Ohio 45433
445.-A. Erdélyi, W. Magnus, F. Oberhettinger \& F. G. Tricomi, Tables of Integral Transforms, McGraw-Hill Book Co., New York, 1954.

On p. 227 of Volume II, in the right member of transform 14.3(26), for $I_{\mu}\left[b(y-\gamma)^{1 / 2}\right]$, read $I_{\nu}\left[b(y-\gamma)^{1 / 2}\right]$.

Sakari Inawashiro
Shigetoshi Katsura
Department of Applied Physics
Tohoku University
Sendai, Japan
On p. 290 of Volume II, the polynomials $H(a x)$ and $H(x)$ in formula 20 should be replaced by $H e(a x)$ and $H e(x)$, respectively, so that the integral will correctly read

$$
\int_{-\infty}^{\infty} \exp \left(-\frac{1}{2} x^{2}\right) H e_{m}(a x) H e_{n}(x) d x .
$$

Similarly, on p. 291, in formula 21 the integrand should read

$$
\exp \left(-\frac{1}{2} x^{2}\right) H e_{2 m+n}(a x) H e_{n}(x)
$$

Lee C. Bradley
Lincoln Laboratory
Massachusetts Institute of Technology
Lexington, Massachusetts 02173
Editorial note: For notices of further errata in this set of tables, see Math. Comp., v. 15, 1961, pp. 319-321, MTE 304; v. 18, 1964, pp. 532-533, MTE 353; v. 19, 1965, p. 361, MTE 367 ; v. 20, 1966, p. 641, MTE 401; v. 22, 1968, p. 473, MTE 422, pp. 695-696, MTE 424, p. 903, MTE 427; v. 23, 1969, p. 468, MTE 436.
446.-I. S. Gradshteyn \& I. M. Ryzhik, Table of Integrals, Series, and Products, 4th edition, Academic Press, New York, 1965.

On p. 837, in formula 7.374 .4 the exponent of 2 in the right member should be n instead of $-m+\frac{1}{2}$.

Lee C. Bradley

Editorial note: For additional corrections see Math. Comp., v. 22, 1968, pp. 903-907, MTE 428 and v. 23, 1969, pp. 468-469, MTE 437.
447.-C. Lanczos, Applied Analysis, Prentice-Hall, Englewood Cliffs, N. J., 1961.

On p. 514, the coefficient of x^{12} in the shifted Legendre polynomial $P_{13}{ }^{*}(x)$ should read 67603900 instead of 97603900 .

A. Forbes
M. Lal

Department of Mathematics
Memorial University of Newfoundland
St. John's, Newfoundland, Canada
Editorial note: For a previous announcement of an error in this book, see Math. Comp., v. 17, 1963, p. 334, MTE 335.
448.-T. N. L. Patterson, "The optimum addition of points to quadrature formulae," Math. Comp., v. 22, 1968, pp. 847-856.
Recalculation to higher precision has revealed that a few of the early abscissas given in Table M14 (appearing in the microfiche supplement of this issue) are inaccurate beyond the 12th decimal place. An emended version of Table M14, giving abscissas and weights to 20S, appears in the microfiche supplement of this issue. The weights in the original table are consistent with the corresponding abscissas, so that in practice the difference in results produced by that table and the modified one will be insignificant.

T. N. L. Patterson

Southwest Center for Advanced Studies
Dallas, Texas 75230
449.-Murray R. Spiegel, Mathematical Handbook of Formulas and Tables, McGraw-Hill Book Co., New York, 1968.

In 1.27 , on p. 1 and in 5.14, on p. 12, the final digit in the 20 S approximation to $\pi / 180$ should be rounded correctly to an 8 .

In formula 5.37, on p .15 , the denominator of the right member should read $\cot B \pm \cot A$.

In formula 7.14 on p. 24 , the 10 D value of $\ln 10$ should be rounded up to read 2.3025850930 .

In formula 19.29 on p. 108, the right member should read $3 \pi^{3} \sqrt{ } 2 / 128$, in place of $3 \pi^{2} \sqrt{ } 2 / 16$.

In problem 6(d) on p. 195, the logarithm of . 009848 should read $7.9933-10$.
In problem 27(a) on p. 200, the last equation should read

$$
\sinh (4.846)=63.231+\frac{6}{10}(.635)=63.612
$$

J. W. W.

