

In Table IV, on p. 301, which lists to 16D the zeros x_n of $J_1(x)$ and the corresponding turning values $J_0(x_n)$ of $J_0(x)$, the following corrections should be made:

In $J_0(x)$, for 8622, read 8522,

$J_0(x_{10})$, for 8193 1148, read 8183 9823,

$J_0(x_{20})$, for 7192, read 4241,

$J_0(x_{29})$, for 2981 9746, read 2982 2263,

$J_0(x_{30})$, for 4857, read 4858,

$J_0(x_{40})$, for 0974, read 0374.

Anne E. Russon
James M. Blair

Chalk River Nuclear Laboratories
Chalk River, Ontario, Canada

On p. 170, 1–7, the second term of the Wronskian determinant should read

$$-Q_0^\mu(x) \frac{d}{dx} P_0^\mu(x)$$

instead of

$$-P_0^\mu(x) \frac{d}{dx} Q_0^\mu(x).$$

On p. 359, 1. 13, for $k = \sin(\pi/18)$, read $k = \sin(\pi/12)$. This error appears also in the 1948 German edition, and has been reproduced in the tables of Gradshteyn & Ryzhik (see the corresponding corrections listed in Math. Comp., v. 22, 1968, p. 904, MTE 428, and v. 14, 1960, p. 402, MTE 293).

Henry E. Fettis

On p. 4, Eq. (1.12) should read

$$1F_1(\alpha; 2\alpha; \pm p) = \frac{2^{2a-1} \Gamma(\alpha + \frac{1}{2})}{p^{\alpha-1/2}} e^{\pm p/2} I_{\alpha-1/2}(p/2),$$

where $2\alpha \neq 0, -1, -2, \ldots$.

Murlan S. Corrington