Table for Third-Degree Spline Interpolation
With Equally Spaced Arguments*

By T. N. E. Greville

Abstract. A table is given to facilitate the calculation of the parameters of the interpolating third-degree natural spline function for \(n \) given data points \((n > 2) \) with equally spaced abscissas. The use of the table is described and the correctness of the algorithm is demonstrated.

1. Introduction. Given a set of \(n \) real numbers \(x_1 < x_2 < \cdots < x_n \) called "knots," a spline function of degree \(m \) having the knots \(x_j \) is defined to be a function \(S(x) \) satisfying the following two conditions:

(1) In each interval \((x_j, x_{j+1}) \) \((j = 0, 1, \cdots, n; x_0 = -\infty, x_{n+1} = \infty) \), \(S(x) \) is given by some polynomial of degree \(m \) (or less).

(2) The polynomial arcs which represent the function in successive intervals join smoothly in the sense that \(S(x) \) and its derivatives of order 1, 2, \(\cdots, m - 1 \) are continuous over \((-\infty, \infty) \).

A spline function of odd degree \(2k - 1 \) is called a "natural" spline function if it satisfies the further condition:

(3) In each of the two intervals \((-\infty, x_1) \) and \((x_n, \infty) \) \(S(x) \) is represented by a polynomial of degree \(k - 1 \) or less (in general, not the same polynomial in the two intervals).

It is well known [1] that given any set of \(n \) data points \((x_j, y_j) \) with distinct abscissas, and an integer \(k \leq n \), there is a unique natural spline function \(s(x) \) of degree \(2k - 1 \), having its knots limited to the abscissas \(x_j \), that also interpolates the given data points, in the sense that \(s(x_j) = y_j \) \((j = 1, 2, \cdots, n) \). Moreover, in the class of continuous functions \(f(x) \) with continuous derivatives of order 1, 2, \(\cdots, k \) on \((-\infty, \infty) \), this natural spline interpolating function is the "smoothest" interpolating function for the given data points, in the sense that the integral

\[
\int_a^b [f(x)]^2 \, dx
\]

(for any \(a, b \) such that \(a \leq x_1 \) and \(b \geq x_n \)) is smallest.

Third-degree spline functions (i.e., \(k = 2 \)) have been much more widely used than those of any other degree, and an algorithm is given in [1] for obtaining the third-degree interpolating natural spline function for any set of (2 or more) given data points with distinct abscissas. This algorithm involves the solution of an \((n - 2) \times (n - 2) \) tridiagonal system of linear equations.

Received May 26, 1969.

AMS Subject Classifications. Primary 6505, 6520; Secondary 4110, 4130.

Key Words and Phrases. Natural cubic spline interpolation, smoothest interpolating function, generating functions.

* Sponsored by the Mathematics Research Center, United States Army, Madison, Wisconsin, under contract No.: DA-31-124-ARO-D-462.

179
If the abscissas of the data points are equally spaced, substantial simplification is possible, and the parameters of the third-degree interpolating natural spline function can be obtained explicitly, by the use of the table contained in this report, without the necessity of solving a system of equations.

2. Use of the Table. It is assumed that suitable changes of origin and scale have been made, if necessary, so that \(x_j = j \) \((j = 1, 2, \cdots, n) \). On this assumption \(s(x) \) can be expressed [1] in the form

\[
s(x) = s(1) + (x - 1)d + \sum_{j=1}^{n} c_j(x - j)^3,
\]

where the truncated power function \(z^+ \) is given by

\[
z^+ = \begin{cases}
 z^3 & (z \geq 0) \\
 0 & (z < 0)
\end{cases}
\]

The coefficients \(d \) and \(c_j \) are to be determined.

Table 1

<table>
<thead>
<tr>
<th>(j)</th>
<th>(\alpha_j)</th>
<th>(\beta_j)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>-6</td>
<td>-4</td>
</tr>
<tr>
<td>4</td>
<td>24</td>
<td>15</td>
</tr>
<tr>
<td>5</td>
<td>-90</td>
<td>-56</td>
</tr>
<tr>
<td>6</td>
<td>-336</td>
<td>209</td>
</tr>
<tr>
<td>7</td>
<td>-1254</td>
<td>-780</td>
</tr>
<tr>
<td>8</td>
<td>4680</td>
<td>2911</td>
</tr>
<tr>
<td>9</td>
<td>-17466</td>
<td>-10864</td>
</tr>
<tr>
<td>10</td>
<td>65184</td>
<td>40545</td>
</tr>
<tr>
<td>11</td>
<td>-2 43270</td>
<td>-1 51316</td>
</tr>
<tr>
<td>12</td>
<td>9 07896</td>
<td>5 64719</td>
</tr>
<tr>
<td>13</td>
<td>-33 88314</td>
<td>-21 0750</td>
</tr>
<tr>
<td>14</td>
<td>126 45360</td>
<td>78 65521</td>
</tr>
<tr>
<td>15</td>
<td>-471 93126</td>
<td>-293 54524</td>
</tr>
<tr>
<td>16</td>
<td>1761 27144</td>
<td>1095 32575</td>
</tr>
<tr>
<td>17</td>
<td>-6573 15450</td>
<td>-4088 55776</td>
</tr>
<tr>
<td>18</td>
<td>24531 34656</td>
<td>15258 70529</td>
</tr>
<tr>
<td>19</td>
<td>-91552 23174</td>
<td>-56946 26340</td>
</tr>
<tr>
<td>20</td>
<td>3 41677 58040</td>
<td>2 12526 34831</td>
</tr>
</tbody>
</table>

The table can be continued by means of the following relations (the first of which does not hold for \(j = 3 \)):

\[
\begin{align*}
\alpha_{j+1} &= -4\alpha_j - \alpha_{j-1} \\
\beta_{j+1} &= -4\beta_j - \beta_{j-1} \\
\alpha_j &= \beta_j - 2\beta_{j-1} + \beta_{j-2}
\end{align*}
\]

Table 1 gives the values of integer constants \(\alpha_j \) and \(\beta_j \), corresponding to each integer \(j \geq 2 \). The coefficient \(d \) is given by
(2.2) \[d = \frac{[\alpha_2(y_n - y_1) + \alpha_3(y_{n-1} - y_1) + \cdots + \alpha_n(y_2 - y_1)]}{\beta_n}. \]

In order to avoid very rapid accumulation of rounding error (which would otherwise be a serious problem if \(n \) is even moderately large), it is suggested that the division by \(\beta_n \) be postponed. Thus \(d \) would be retained in the form \(N/\beta_n \), where \(N \) is calculated exactly, using integer or fixed-point arithmetic.

The quantities \(\beta_n c_j \) (\(j = 1, 2, \ldots, n \)) are then obtained recursively by the formulas

\[
\begin{align*}
\beta_n c_1 &= \beta_n (y_2 - y_1) - N, \\
\beta_n c_j &= \beta_n (y_{j+1} - y_1) - jN - 2^3 \beta_n c_{j-1} - 3^3 \beta_n c_{j-2} - \cdots - j^3 \beta_n c_1 \\
&\quad \quad \text{for } j = 2, 3, \ldots, n - 1, \\
\beta_n c_n &= -\beta_n c_1 - \beta_n c_2 - \cdots - \beta_n c_{n-1},
\end{align*}
\]

again using exact calculation throughout. (The quantities \(y_j - y_1 \) must, of course, be actually multiplied by \(\beta_n \).) Finally, \(N \) and the quantities \(\beta_n c_j \) are divided by \(\beta_n \) to give the parameters \(d \) and \(c_j \) to the desired precision. It should be borne in mind that in the expression (2.1) the coefficients \(c_j \) (especially those with smaller indices) will sometimes be multiplied by large numbers, and may be needed to many decimal places.

3. Derivations and Proofs. Taking \(a = k + 1 \) in (2.1), transposing certain terms, and noting that \(s(k) = y_k \) for \(k = 1, 2, \ldots, n \) gives at once

\[c_k = y_{k+1} - y_1 - kd - 2^3 c_{k-1} - 3^3 c_{k-2} - \cdots - k^3 c_1, \]

from which (2.4) follows immediately. Similarly, taking \(x = 2 \) gives (2.3).

Let \(\phi(x) \) denote the infinite series

\[\phi(x) = 1^2 + 2^2 x + 3^2 x^2 + \cdots, \]

which converges in the interior of the unit circle. By actual multiplication

\[(1 - x)^2 \phi(x) = 1 + 4x + x^2, \]

and therefore

\[\phi(x) = \frac{1 + 4x + x^2}{(1 - x)^2}. \]

Further, let

\[\eta(x) = \sum_{j=2}^{\infty} [s(j) - s(1)] x^{j-2}. \]

As \(s(x) \) is a linear function for \(x \geq n \), this series also converges within the unit circle, as does the binomial expansion

\[(1 - x)^{-2} = 1 + 2x + 3x^2 + \cdots. \]

Finally, we denote by \(C(x) \) the polynomial

\[C(x) = c_1 + c_2 x + \cdots + c_n x^{n-1}. \]
From (2.1), (3.1), (3.3), (3.4) and (3.5) we obtain the identity
\[\eta(x) = d(1 - x)^{-2} + \phi(x)C(x). \]

Now, let
\[\psi(x) = \frac{1}{1 + 4x + x^2}. \]

Clearly its Maclaurin expansion
\[\psi(x) = \sum_{j=0}^{\infty} b_j x^j = 1 - 4x + 15x^2 - \cdots \]

converges in a neighborhood of the origin. Multiplying (3.6) by \((1 - x)^2 \psi(x)\) gives
\[(1 - x)^2 \psi(x) \eta(x) = d\phi(x) + (1 - x)^{-2}C(x), \]

where we have used (3.2) and (3.7). It is shown in [1] that the coefficients \(c_j\) satisfy the two conditions
\[c_1 + c_2 + \cdots + c_n = 0, \]
\[c_1 + 2c_2 + \cdots + nc_n = 0. \]

Incidentally, (2.5) follows from (3.10).

Returning, however, to (3.9), we equate coefficients of \(x^{n-2}\) on both sides of that equation, noting that the coefficient of \(x^{n-2}\) in \((1 - x)^{-2}C(x)\) is
\[(n - 1)c_1 + (n - 2)c_2 + \cdots + 2c_{n-2} + c_{n-1} = n(c_1 + c_2 + \cdots + c_n) - (c_1 + 2c_2 + \cdots + nc_n) = 0, \]

by (3.10) and (3.11). Further, let
\[\sum_{j=0}^{\infty} a_j x^j, \]

a series having the same region of convergence as that in (3.8). We obtain, therefore,
\[a_0(y_n - y_1) + a_1(y_{n-1} - y_1) + \cdots + a_{n-2}(y_2 - y_1) = db_{n-2}. \]

Finally, we redesignate the coefficients \(a_j\) and \(b_j\) as \(a_j\) and \(\beta_j\), shifting the indices (for notational convenience in the use of Table 1) so that \(\alpha_j = a_{j-2}\) and \(\beta_j = b_{j-2}\). Making these substitutions in (3.13) at once gives (2.2). The recurrence relation for the quantities \(\alpha_j\) follows from (3.7) and (3.12); that for the \(\beta_j\) from (3.7) and (3.8). The relation \(\alpha_j = \beta_j - 2\beta_{j-1} + \beta_{j-2}\) is an immediate consequence of (3.8) and (3.12).

4. Illustrative Example. The values of \(j\) and \(y_j\) in Table 2, due to K. A. Innanen [2], represent ten points on a segment of a theoretical rotation curve of the galactic system. Here \(y_j\) is the circular velocity in the galactic plane in km/sec at a distance of \(j\) kiloparsecs from the galactic center. Substituting in (2.2) the values of \(\alpha_j\) from Table 1 and those of \(y_j - y_1\) from Table 2 gives
\[d = [1(-24.0) - 6(-22.5) + 24(-23.0) - \cdots + 65184(-23.0)]/40545 \]
\[= -1005780/40545 = -67052/2703 = -24.8065. \]
Values of 2703c_j are calculated exactly, using (2.3), (2.4), and (2.5). Finally, division by 2703 gives the values of c_j, shown in the last column of Table 2 to four decimal places. Thus, the third-degree interpolating natural spline function for these data is

\[
244.0 - 24.8065(x - 1) + 1.8065(x - 1)^3 - 0.8391(x - 2)^3 \\
- 3.6437(x - 3)^3 + 2.9140(x - 4)^3 - 1.0122(x - 5)^3 \\
+ 1.1349(x - 6)^3 - 0.5272(x - 7)^3 - 0.0261(x - 8)^3 \\
+ 0.6315(x - 9)^3 - 0.4386(x - 10)^3.
\]

Mathematics Research Center, U. S. Army
University of Wisconsin
Madison, Wisconsin 53706
