The calculation of Fourier coefficients by the Möbius inversion of the Poisson summation formula. I. Functions whose early derivatives are continuous
Author:
J. N. Lyness
Journal:
Math. Comp. 24 (1970), 101135
MSC:
Primary 65.90
MathSciNet review:
0260230
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: The Möbius inversion technique is applied to the Poisson summation formula. This results in expressions for the remainder term in the Fourier coefficient asymptotic expansion as an infinite series. Each element of this series is a remainder term in the corresponding EulerMaclaurin summation formula, and the series has specified convergence properties. These expressions may be used as the basis for the numerical evaluation of sets of Fourier coefficients. The organization of such a calculation is described, and discussed in the context of a broad comparison between this approach and various other standard methods.
 [1]
Handbook of mathematical functions, with formulas, graphs, and
mathematical tables, Edited by Milton Abramowitz and Irene A. Stegun,
Dover Publications, Inc., New York, 1966. MR 0208797
(34 #8606)
 [2]
W.
G. Bickley, Formulae for numerical differentiation, Math. Gaz.
25 (1941), 19–27. MR 0003580
(2,240a)
 [3]
James
W. Cooley and John
W. Tukey, An algorithm for the machine
calculation of complex Fourier series, Math.
Comp. 19 (1965),
297–301. MR 0178586
(31 #2843), http://dx.doi.org/10.1090/S00255718196501785861
 [4]
Philip
J. Davis and Philip
Rabinowitz, Numerical integration, Blaisdell Publishing Co.
Ginn and Co., Waltham, Mass.Toronto, Ont.London, 1967. MR 0211604
(35 #2482)
 [5]
L. N. G. Filon, "On a quadrature formula for trigonometric integrals," Proc. Roy. Soc. Edinburgh, v. 49, 1929, pp. 3847.
 [6]
W. M. Gentleman & G. Sande, Fast Fourier Transforms for Fun and Profit, Proc. AFIPS 1966 Fall Joint Computer Conf., v. 29, 1966, pp. 563578.
 [7]
Richard
R. Goldberg and Richard
S. Varga, Moebius inversion of Fourier transforms, Duke Math.
J. 23 (1956), 553–559. MR 0080800
(18,304b)
 [8]
R.
W. Hamming, Numerical methods for scientists and engineers,
2nd ed., McGrawHill Book Co., New YorkDüsseldorfJohannesburg, 1973.
International Series in Pure and Applied Mathematics. MR 0351023
(50 #3514)
 [9]
G.
H. Hardy and E.
M. Wright, An introduction to the theory of numbers, Oxford,
at the Clarendon Press, 1954. 3rd ed. MR 0067125
(16,673c)
 [10]
Zdeněk
Kopal, Numerical analysis. With emphasis on the application of
numerical techniques to problems of infinitesimal calculus in single
variable, John Wiley & Sons, Inc., New York, 1955. MR 0077213
(17,1007c)
 [11]
E. Landau, Vorlesungen über Zahlentheorie. Band II, Chelsea, New York, 1947.
 [12]
Yudell
L. Luke, On the computation of oscillatory integrals, Proc.
Cambridge Philos. Soc. 50 (1954), 269–277. MR 0062518
(15,992b)
 [13]
J.
N. Lyness, Quadrature methods based on complex
function values, Math. Comp. 23 (1969), 601–619. MR 0247771
(40 #1032), http://dx.doi.org/10.1090/S00255718196902477716
 [14]
J.
N. Lyness and C.
B. Moler, Generalized Romberg methods for integrals of
derivatives, Numer. Math. 14 (1969/1970), 1–13.
MR
0256564 (41 #1220)
 [15]
L. M. MilneThompson, The Calculus of Finite Differences, Macmillan, London, 1933.
 [16]
C.
Ballester and V.
Pereyra, On the construction of discrete
approximations to linear differential expressions, Math. Comp. 21 (1967), 297–302. MR 0228167
(37 #3751), http://dx.doi.org/10.1090/S00255718196702281678
 [1]
 M. Abramowitz & I. A. Stegun (Editors), Handbook of Mathematical Functions, with Formulas, Graphs, and Mathematical Tables, Dover, New York, 1966. MR 34 #8606. MR 0208797 (34:8606)
 [2]
 W. G. Bickley, "Formulae for numerical differentiation," Math. Gaz., v. 25, 1941, pp. 1927. MR 2, 240. MR 0003580 (2:240a)
 [3]
 J. W. Cooley & J. W. Tukey, "An algorithm for the machine calculation of complex Fourier series," Math. Comp., v. 19, 1965, pp. 297301. MR 31 #2843. MR 0178586 (31:2843)
 [4]
 P. Davis & P. Rabinowitz, Numerical Integration, Blaisdell, Waltham, Mass., 1967. MR 35 #2482. MR 0211604 (35:2482)
 [5]
 L. N. G. Filon, "On a quadrature formula for trigonometric integrals," Proc. Roy. Soc. Edinburgh, v. 49, 1929, pp. 3847.
 [6]
 W. M. Gentleman & G. Sande, Fast Fourier Transforms for Fun and Profit, Proc. AFIPS 1966 Fall Joint Computer Conf., v. 29, 1966, pp. 563578.
 [7]
 R. R. Goldberg & R. S. Varga, "Moebius inversion of Fourier transforms," Duke Math. J., v. 23, 1956, pp. 553559. MR 18, 304. MR 0080800 (18:304b)
 [8]
 R. W. Hamming, Numerical Methods for Scientists and Engineers, McGrawHill, New York, 1962. MR 25 #735. MR 0351023 (50:3514)
 [9]
 G. H. Hardy & E. M. Wright, An Introduction to the Theory of Numbers, Clarendon Press, Oxford, 1954. MR 16, 673. MR 0067125 (16:673c)
 [10]
 Z. Kopal, Numerical Analysis, Wiley, New York, 1955. MR 17, 1007. MR 0077213 (17:1007c)
 [11]
 E. Landau, Vorlesungen über Zahlentheorie. Band II, Chelsea, New York, 1947.
 [12]
 Y. L. Luke, "On the computation of oscillatory integrals," Proc. Cambridge Philos. Soc., v. 50, 1954, pp. 269277. MR 15, 992. MR 0062518 (15:992b)
 [13]
 J. N. Lyness, "Quadrature methods based on complex function values," Math. Comp., v. 23, 1969, pp. 601619. MR 0247771 (40:1032)
 [14]
 J. N. Lyness & C. B. Moler, "Generalised Romberg methods for integrals of derivatives," Numer. Math. (To appear.) MR 0256564 (41:1220)
 [15]
 L. M. MilneThompson, The Calculus of Finite Differences, Macmillan, London, 1933.
 [16]
 C. Ballester & V. Pereyra, "On the constructions of discrete approximations to linear differential expressions," Math. Comp., v. 21, 1967, pp. 297302. MR 0228167 (37:3751)
Similar Articles
Retrieve articles in Mathematics of Computation
with MSC:
65.90
Retrieve articles in all journals
with MSC:
65.90
Additional Information
DOI:
http://dx.doi.org/10.1090/S00255718197002602308
PII:
S 00255718(1970)02602308
Keywords:
Fourier coefficients,
Fourier series,
Poisson summation formula,
EulerMaclaurin summation formula,
Möbius inversion,
FilonLuke formulas,
fast Fourier transform,
trapezoidal quadrature rule,
Fourier coefficient asymptotic expansion
Article copyright:
© Copyright 1970
American Mathematical Society
