Symmetric elliptic integrals of the third kind
Authors:
D. G. Zill and B. C. Carlson
Journal:
Math. Comp. 24 (1970), 199214
MSC:
Primary 33.19
MathSciNet review:
0262553
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: Legendre's incomplete elliptic integral of the third kind can be replaced by an integral which possesses permutation symmetry instead of a set of linear transformations. Two such symmetric integrals are discussed, and direct proofs are given of properties corresponding to the following parts of the Legendre theory: change of parameter, Landen and Gauss transformations, interchange of argument and parameter, relation of the complete integral to integrals of the first and second kinds, and addition theorem. The theory of the symmetric integrals offers gains in simplicity and unity, as well as some new generalizations and some inequalities.
 [1]
Paul
F. Byrd and Morris
D. Friedman, Handbook of elliptic integrals for engineers and
physicists, Die Grundlehren der mathematischen Wissenschaften in
Einzeldarstellungen mit besonderer Berücksichtigung der
Anwendungsgebiete. Bd LXVII, SpringerVerlag,
BerlinGöttingenHeidelberg, 1954. MR 0060642
(15,702a)
 [2]
B.
C. Carlson, Lauricella’s hypergeometric function
𝐹_{𝐷}, J. Math. Anal. Appl. 7 (1963),
452–470. MR 0157017
(28 #258)
 [3]
B.
C. Carlson, Normal elliptic integrals of the first and second
kinds, Duke Math. J. 31 (1964), 405–419. MR 0164067
(29 #1366)
 [4]
B.
C. Carlson, On computing elliptic integrals and functions, J.
Math. and Phys. 44 (1965), 36–51. MR 0175285
(30 #5470)
 [5]
B.
C. Carlson, Some inequalities for hypergeometric
functions, Proc. Amer. Math. Soc. 17 (1966), 32–39. MR 0188497
(32 #5935), http://dx.doi.org/10.1090/S00029939196601884976
 [6]
B.
C. Carlson and M.
D. Tobey, A property of the hypergeometric mean
value, Proc. Amer. Math. Soc. 19 (1968), 255–262. MR 0222349
(36 #5401), http://dx.doi.org/10.1090/S0002993919680222349X
 [7]
B.
C. Carlson, A connection between elementary functions and higher
transcendental functions, SIAM J. Appl. Math. 17
(1969), 116–148. MR 0247139
(40 #408)
 [8]
Arthur
Cayley, An elementary treatise on elliptic functions, 2nd ed.
Dover Publications, Inc., New York, 1961. MR 0124532
(23 #A1844)
 [9]
A. Erdélyi, W. Magnus, F. Oberhettinger & F. G. Tricomi, Higher Transcendental Functions, McGrawHill, New York, 1953, Chapter 13. MR 15, 419; MR 16, 586.
 [10]
W.
J. Nellis and B.
C. Carlson, Reduction and evaluation of elliptic
integrals, Math. Comp. 20 (1966), 223–231. MR 0215497
(35 #6337), http://dx.doi.org/10.1090/S00255718196602154978
 [11]
F. G. Tricomi, Funzioni Ellittiche, Zanichelli, Bologna, 1937; German transl., Akademische Verlagsgesellschaft, Geest & Portig, Leipzig, 1948. MR 10, 532.
 [12]
D. G. Zill, Elliptic Integrals of the Third Kind, Ph. D. Thesis, Iowa State University, Ames, Iowa, 1967.
 [13]
L. M. MilneThomson, "Elliptic integrals," M. Abramowitz & I. Stegun (Editors), Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Department of Commerce, Nat. Bur. Standards Appl. Math. Series, 55, U. S. Government Printing Office, Washington, D. C., 1964; 3rd printing, with corrections, 1965. MR 29 #4941; MR 31 #1400.
 [1]
 P. F. Byrd & M. D. Friedman, Handbook of Elliptic Integrals for Engineers and Physicists, Die Grundlehren der mathematischen Wissenschaften, Band 67, SpringerVerlag, Berlin, 1954. MR 15, 702. MR 0060642 (15:702a)
 [2]
 B. C. Carlson, "Lauricella's hypergeometric function ," J. Math. Anal. Appl., v. 7, 1963, pp. 452470. MR 28 #258. MR 0157017 (28:258)
 [3]
 B. C. Carlson, "Normal elliptic integrals of the first and second kinds," Duke Math. J., v. 31, 1964, pp. 405419. MR 29 #1366. MR 0164067 (29:1366)
 [4]
 B. C. Carlson, "On computing elliptic integrals and functions," J. Math. Phys., v. 44, 1965, pp. 3651. MR 30 #5470. MR 0175285 (30:5470)
 [5]
 B. C. Carlson, "Some inequalities for hypergeometric functions," Proc. Amer. Math. Soc., v. 17, 1966, pp. 3239. MR 32 #5935. MR 0188497 (32:5935)
 [6]
 B. C. Carlson & M. D. Tobey, "A property of the hypergeometric mean value," Proc. Amer. Math. Soc., v. 19, 1968, pp. 255262. MR 36 #5401. MR 0222349 (36:5401)
 [7]
 B. C. Carlson, "A connection between elementary functions and higher transcendental functions," SIAM J. Appl. Math., v. 17, 1969, pp. 116148. MR 0247139 (40:408)
 [8]
 A. Cayley, Elliptic Functions, Dover, New York, 1961. MR 0124532 (23:A1844)
 [9]
 A. Erdélyi, W. Magnus, F. Oberhettinger & F. G. Tricomi, Higher Transcendental Functions, McGrawHill, New York, 1953, Chapter 13. MR 15, 419; MR 16, 586.
 [10]
 W. J. Nellis & B. C. Carlson, "Reduction and evaluation of elliptic integrals," Math. Comp., v. 20, 1966, pp. 223231. MR 35 #6337. MR 0215497 (35:6337)
 [11]
 F. G. Tricomi, Funzioni Ellittiche, Zanichelli, Bologna, 1937; German transl., Akademische Verlagsgesellschaft, Geest & Portig, Leipzig, 1948. MR 10, 532.
 [12]
 D. G. Zill, Elliptic Integrals of the Third Kind, Ph. D. Thesis, Iowa State University, Ames, Iowa, 1967.
 [13]
 L. M. MilneThomson, "Elliptic integrals," M. Abramowitz & I. Stegun (Editors), Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Department of Commerce, Nat. Bur. Standards Appl. Math. Series, 55, U. S. Government Printing Office, Washington, D. C., 1964; 3rd printing, with corrections, 1965. MR 29 #4941; MR 31 #1400.
Similar Articles
Retrieve articles in Mathematics of Computation
with MSC:
33.19
Retrieve articles in all journals
with MSC:
33.19
Additional Information
DOI:
http://dx.doi.org/10.1090/S00255718197002625535
PII:
S 00255718(1970)02625535
Keywords:
Elliptic integrals,
Landen transformation,
Gauss transformation,
addition theorem,
hypergeometric functions
Article copyright:
© Copyright 1970
American Mathematical Society
