Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Elliptic spline functions and the Rayleigh-Ritz-Galerkin method


Author: Martin H. Schultz
Journal: Math. Comp. 24 (1970), 65-80
MSC: Primary 65.62; Secondary 41.00
DOI: https://doi.org/10.1090/S0025-5718-1970-0264857-9
MathSciNet review: 0264857
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Error estimates for the Rayleigh-Ritz-Galerkin method, using finite-dimensional spline type spaces, for a class of nonlinear two-point boundary value problems are discussed. The results of this paper extend and improve recent corresponding results of B. L. Hulme, F. M. Perrin, H. S. Price, and R. S. Varga.


References [Enhancements On Off] (What's this?)

  • [1] J. H. Ahlberg & E. N. Nilson, "The approximation of linear functionals," SIAM J. Numer. Anal., v. 3, 1966, pp. 173-182. MR 36 #589. MR 0217500 (36:589)
  • [2] G. Birkhoff, M. H. Schultz & R. S. Varga, "Piecewise Hermite interpolation in one and two variables with applications to partial differential equations," Numer. Math., v. 11, 1968, pp. 232-256. MR 37 #2404. MR 0226817 (37:2404)
  • [3] P. G. Ciarlet, M. H. Schultz & R. S. Varga, "Numerical methods of high-order accuracy for nonlinear boundary value problems. I: One dimensional problem," Numer. Math., v. 9, 1967, pp. 394-430. MR 36 #4813. MR 0221761 (36:4813)
  • [4] P. G. Ciarlet, M. H. Schultz & R. S. Varga, "Numerical methods of high-order accuracy for nonlinear boundary value problems. V: Monotone operators," Numer. Math., v. 13, 1969, pp. 51-77. MR 0250496 (40:3730)
  • [5] G. H. Hardy, J. E. Littlewood & G. Pólya, Inequalities, 2nd ed., Cambridge Univ. Press, New York, 1952. MR 13, 727. MR 0046395 (13:727e)
  • [6] P. Hartman, Ordinary Differential Equations, Wiley, New York, 1964. MR 30 #1270. MR 0171038 (30:1270)
  • [7] B. L. Hulme, "Interpolation by Ritz approximation," J. Math. Mech., v. 18, 1968, pp. 337-341. MR 37 #7090. MR 0231537 (37:7090)
  • [8] G. G. Lorentz, Approximation of Functions, Holt, Rinehart, and Winston, New York, 1966. MR 35 #4642. MR 0213785 (35:4642)
  • [9] F. M. Perrin, H. S. Price & R. S. Varga, "On higher-order numerical methods for nonlinear two-point boundary value problems," Numer. Math., v. 13, 1968, pp. 180-188. MR 0255069 (40:8276)
  • [10] M. E. Rose, "Finite difference schemes for differential equations," Math. Comp., v. 18, 1964, pp. 179-195. MR 32 #605. MR 0183123 (32:605)
  • [11] M. H. Schultz, "Error bounds for polynomial spline interpolation." (To appear.) MR 0275025 (43:783)
  • [12] M. H. Schultz & R. S. Varga, "L-splines," Numer. Math., v. 10, 1967, pp. 345-369. MR 37 #665. MR 0225068 (37:665)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 65.62, 41.00

Retrieve articles in all journals with MSC: 65.62, 41.00


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1970-0264857-9
Keywords: Rayleigh-Ritz-Galerkin method, variational method, spline space, two-point boundary value problem, spline interpolation
Article copyright: © Copyright 1970 American Mathematical Society

American Mathematical Society