
On p. 320, in Section 13.8, Eq. (17), for \(\pi/18 \), read \(\pi/12 \).

On the same page, Eq. (20) should be corrected to read

\[
K'(e^{i\theta/6}) = e^{-i\theta/6}K(e^{i\theta/6}) = \frac{1/2\Gamma(1/6)}{2\cdot 3^{1/4}\Gamma(2/3)} e^{-i\pi/12}.
\]

Henry E. Fettis

Applied Mathematics Research Laboratory
Aerospace Research Laboratories
Wright-Patterson Air Force Base, Ohio 45433

On p. 93, in Eq. (36) of Section 7.14, the second condition for validity of the formula should read \(\text{Re} (-\rho \pm \mu \pm \nu + 1) > 0 \) in place of \(\text{Re} (\rho \pm \mu \pm \nu + 1) > 0 \).

Sayeed-ur-Rahman

Max-Planck Institut
Göttingen, Germany

On p. 310 of Volume I, the Mellin transform, \(g(s) \), in formula (22) should be changed to read

\[
2^{-1/2}(\sin \theta)^{1/2-\nu} B(\frac{1}{2} + \nu) B(2\nu - s) P^{1/2-\nu}_{\nu-1/2}(\cos \theta).
\]

This formula can be obtained by reducing formula (33) on p. 160 of *Higher Transcendental Functions*, Vol. I, by the same authors, to the real axis with \(z = \cos \theta \). Furthermore, it can be checked by combining formula (11) on p. 144 of this last reference with formula 441.4 on p. 184 of *Integraltafel*, v. 2 (*Bestimmte Integrale*), by W. Gröbner & N. Hofreiter.

This error has been reproduced in slightly different notation in formula 3.252.10 on p. 297 of *Table of Integrals, Series and Products*, by I. S. Gradshteyn & I. M. Ryzhik.

A. T. Young

Jet Propulsion Laboratory
Pasadena, California 91103
TABLE ERRATA

In Table IV, on p. 301, which lists to 16D the zeros x_n of $J_1(x)$ and the corresponding turning values $J_0(x_n)$ of $J_0(x)$, the following corrections should be made:

In $J_0(x_8)$, for 8622, read 8522,

$J_0(x_{10})$, for 8193 1148, read 8183 9823,

$J_0(x_{26})$, for 7192, read 4241,

$J_0(x_{29})$, for 2981 9746, read 2982 2263,

$J_0(x_{30})$, for 4857, read 4858,

$J_0(x_{40})$, for 0974, read 0374.

Anne E. Russon
James M. Blair

Chalk River Nuclear Laboratories
Chalk River, Ontario, Canada

On p. 170, 1–7, the second term of the Wronskian determinant should read

$$-Q_\nu''(x) \frac{d}{dx} P_\nu''(x)$$

instead of

$$-P_\nu''(x) \frac{d}{dx} Q_\nu''(x).$$

On p. 359, l. 13, for $k = \sin (\pi/18)$, read $k = \sin (\pi/12).$ This error appears also in the 1948 German edition, and has been reproduced in the tables of Gradshteyn & Ryzhik (see the corresponding corrections listed in Math. Comp., v. 22, 1968, p. 904, MTE 428, and v. 14, 1960, p. 402, MTE 293).

Henry E. Fettis

On p. 4, Eq. (1.12) should read

$$\bar{F}_1(\alpha; 2\alpha; \pm p) = \frac{2^{2\alpha-1} \Gamma(\alpha + \frac{1}{2})}{p^{\alpha-\frac{1}{2}}} e^{\pm p/2} I_{\alpha-\frac{1}{2}}(p/2),$$

where $2\alpha \neq 0, -1, -2, \ldots$.

Murlan S. Corrington
TABLE ERRATA 241

Advanced Technology Laboratories
Radio Corporation of America
Camden, N. J. 08102

EDITORIAL NOTE: For a brief description of this report and the tables therein see MTAC, v. 6, 1952, p. 161, RMT 1014.

On p. xviii, in the definition of the parabolic cylinder function $D_v(x)$, the second subscript of the Whittaker function should have a minus sign prefixed.

A. T. YOUNG

EDITORIAL NOTE: For other errors in this table, see Math. Comp., v. 20, 1966, p. 641, MTE 402.

On p. 145, formula 3.195.1 is incorrect; it should read

$$
\int_0^\infty \frac{x^{a-1}dx}{(p + qx)^{b+1}} = \frac{1}{cp^{b+1}} \left(\frac{p}{q} \right)^{a/c} \frac{\Gamma(g/c)\Gamma(h + 1 - g/c)}{\Gamma(h + 1)}
$$

$[0 < g/c < h + 1, p \neq 0, q \neq 0].$

JAMES J. FILLIBEN

Statistical Engineering Laboratory
Institute for Basic Standards
National Bureau of Standards
Washington, D. C. 20234

On p. 47, Eq. (2.2.2.12), for

$$
J_\nu(iz)J_\nu(iz) = \frac{(iz)^{\mu+\nu}}{2^{\mu+\nu}\Gamma(1 + \mu)\Gamma(1 + \nu)} \text{hyper}_2 \left[\frac{1}{2}\mu + \frac{1}{2}\nu + \frac{1}{2}, \frac{1}{2}\mu + \frac{1}{2}\nu + 1; \frac{1}{2} \right]
$$

read

$$
I_\nu(z)I_\nu(z) = \frac{(iz)^{\mu+\nu}}{\Gamma(1 + \mu)\Gamma(1 + \nu)} \text{hyper}_2 \left[\frac{1}{2}\mu + \frac{1}{2}\nu + \frac{1}{2}, \frac{1}{2}\mu + \frac{1}{2}\nu + 1; z^2 \right]
$$

and
TABLE ERRATA

\[J_\mu(z)J_\nu(z) = \frac{(\frac{1}{2}z)^{\mu+\nu}}{\Gamma(1+\mu)\Gamma(1+\nu)} \binom{2F_3}{\frac{1}{2}\mu + \frac{1}{2}\nu + \frac{1}{2}, \frac{1}{2}\mu + \frac{1}{2}\nu + 1; -z^2}. \]

MURLAN S. CORRINGTON

Advanced Technology Laboratories
Radio Corporation of America
Camden, New Jersey 08102

EDITORIAL NOTE: For a review which cites additional errors, see Math. Comp., v. 20, 1966, pp. 629–630, RMT 103.