Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Integer sequences having prescribed quadratic character


Authors: D. H. Lehmer, Emma Lehmer and Daniel Shanks
Journal: Math. Comp. 24 (1970), 433-451
MSC: Primary 10.03
DOI: https://doi.org/10.1090/S0025-5718-1970-0271006-X
MathSciNet review: 0271006
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: For the odd primes $ {p_1} = 3,$, $ {p_2} = 5, \cdots ,$ we determine integer sequences $ {N_p}$ such that the Legendre symbol $ ({N \mathord{\left/ {\vphantom {N {{p_i}}}} \right. \kern-\nulldelimiterspace} {{p_i}}}) = \pm 1$ for all $ {p_i} \leqq p$ for a prescribed array of signs $ \pm 1$; (i.e., for a prescribed quadratic character). We examine six quadratic characters having special interest and applications. We present tables of these $ {N_p}$ and examine some applications, particularly to questions concerning extreme values for the smallest primitive root (of a prime $ N$), the class number of the quadratic field $ R(\surd - N)$, the real Dirichlet $ L$ functions, and quadratic character sums.


References [Enhancements On Off] (What's this?)

  • [1] W. H. Mills, "Characters with preassigned values," Canad. J. Math., v. 15, 1962, pp. 169-171. MR 28 #71. MR 0156828 (28:71)
  • [2] D. H. Lehmer, "An announcement concerning the Delay Line Sieve DLS-127," Math. Comp., v. 20, 1966, pp. 645-646.
  • [3] Marshall Hall, "Quadratic residues in factorization," Bull. Amer. Math. Soc., v. 39, 1933, pp. 758-763. MR 1562725
  • [4] Allan Cobham, The Recognition Problem for the Set of Perfect Squares, IBM Research Paper, R.C. 1704, April 26, 1966.
  • [5] M. Kraitchik, Recherches sur la Théorie des Nombres. Vol. 1, Paris, 1924, pp. 41-46.
  • [6] D. H. Lehmer, "The mechanical combination of linear forms," Amer. Math. Monthly, v. 35, 1928, pp. 114-121. MR 1521394
  • [7] D. H. Lehmer, "A sieve problem on "pseudo-squares"," MTAC, v. 8, 1954, pp. 241-242. MR 16, 113. MR 0063388 (16:113e)
  • [8] A. E. Western & J. C. P. Miller, Indices and Primitive Roots, Royal Soc. Math. Tables, v. 9, Cambridge Univ. Press, New York, 1968, p. xv. MR 0246488 (39:7792)
  • [9] Daniel Shanks, "Class number, a theory of factorization, and genera." (To appear.) MR 0316385 (47:4932)
  • [10] N. G. W. H. Beeger, "Report on some calculations of prime numbers," Nieuw. Arch. Wiskde, v. 20, 1939, pp. 48-50. MR 1, 65. MR 0000393 (1:65g)
  • [11] Luigi Poletti, "Atlante di centomila numeri primi di ordine quadratico entro cinque miliardi," UMT 62, MTAC, v. 2, 1947, p. 354.
  • [12] H. M. Stark, "A complete determination of the complex quadratic fields of class-number one," Michigan Math. J., v. 14, 1967, pp. 1-27. MR 36 #5102. MR 0222050 (36:5102)
  • [13] D. H. Lehmer, "On the function $ {X^2} + X + A$," Sphinx, v. 6, 1936, pp. 212-214; v. 7, 1937, p. 40; v. 9, 1939, pp. 83-85.
  • [14] Mohan Lal & Daniel Shanks, "Class numbers and a high density of primes." (To appear.)
  • [15] R. Ayoub, S. Chowla & H. Walum, "On sums involving quadratic characters," J. London Math. Soc., v. 42, 1967, pp. 152-154. MR 34 #4224. MR 0204382 (34:4224)
  • [16] Daniel Shanks, "Generalized Euler and class numbers," Math. Comp., v. 21, 1967, pp. 689-694. MR 36 #6343. MR 0223295 (36:6343)
  • [17] Daniel Shanks, "On the conjecture of Hardy & Littlewood concerning the number of primes of the form $ {n^2} + a$," Math. Comp., v. 14, 1960, pp. 320-332. MR 22 #10960. MR 0120203 (22:10960)
  • [18] Daniel Shanks,."Supplementary data and remarks concerning a Hardy-Littlewood conjecture," Math. Comp., v. 17, 1963, pp. 188-193. MR 28 #3013. MR 0159797 (28:3013)
  • [19] Daniel Shanks, "On Gauss's class number problems," Math. Comp., v. 23, 1969, pp. 151-163. MR 0262204 (41:6814)
  • [20] Edward T. Ordman, "Tables of class numbers for negative prime discriminants," UMT 29, Math. Comp., v. 23, 1969, p. 458.
  • [21] Morris Newman, "Table of the class number $ h( - p)$ for $ p$ prime, $ p \equiv 3(\bmod 4)$, $ 101987 \leqq p \leqq $ ," UMT 50, Math. Comp., v. 23, 1969, p. 683. MR 0227127 (37:2712)
  • [22] Peter Weinberger, Dissertation, University of California, Berkeley, Calif., June, 1969.
  • [23] Edgar Karst, "The congruence $ {2^{p - 1}} \equiv 1(\bmod {p^2})$ and quadratic forms with high density of primes," Elem. Math., v. 22, 1967, pp. 85-88. MR 35 #6612. MR 0215777 (35:6612)
  • [24] C. L. Siegel, "Über die Classenzahl quadratischer Zahlkorper," Acta Arith., v. 1, 1935, pp. 83-86.
  • [25] E. Landau, Handbuch der Lehre von der Verteilung der Primzahlen. Bände 2, Chelsea, New York, 1953, §186, "Euler's Reihen," pp. 673-676. MR 16, 904.

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 10.03

Retrieve articles in all journals with MSC: 10.03


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1970-0271006-X
Keywords: Quadratic character, sieves, primitive roots, class number, Dirichlet $ L$ functions, quadratic character sums, pseudo-squares
Article copyright: © Copyright 1970 American Mathematical Society

American Mathematical Society