Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

An analysis of ``boundary-value techniques'' for parabolic problems.


Authors: Alfred Carasso and Seymour V. Parter
Journal: Math. Comp. 24 (1970), 315-340
MSC: Primary 65.68
DOI: https://doi.org/10.1090/S0025-5718-1970-0284019-9
MathSciNet review: 0284019
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Finite-difference methods for parabolic initial boundary problems are usually treated as marching procedures. However, if the solution reaches a known steady state value as $ t \to \infty $, one may provide approximate values on a line $ t = T$ for a preselected $ T$ suitably large. With this extra data, it is feasible to consider the use of elliptic boundary-value techniques for the numerical computation of such problems. In this report we give a complete analysis of this method for the linear second-order case with time-independent coefficients. We also discuss iterative methods for solving the difference equations. Finally, we give an example where the method fails.


References [Enhancements On Off] (What's this?)

  • [1] F. V. Atkinson, Discrete and Continuous Boundary Problems, Mathematics in Science and Engineering, vol. 8, Academic Press, New York, 1964. MR 31 #416. MR 0176141 (31:416)
  • [2] R. E. Bellman, Introduction to Matrix Analysis, McGraw-Hill, New York, 1960. MR 23 #A153. MR 0122820 (23:A153)
  • [3] H. Bückner, "Über Konvergenzsätze, die sich bei der Anwendung eines Differenzenverfahrens auf ein Sturm-Liouvillesches Eigenwertproblem ergeben," Math. Z., v. 51, 1948, pp. 423-465. MR 11, 58. MR 0030820 (11:58a)
  • [4] A. Carasso, An Analysis of Numerical Methods for Parabolic Problems Over Long Times, Ph.D. Thesis, University of Wisconsin, Madison, Wis., 1968.
  • [5] A. Carasso, "Finite-difference methods and the eigenvalue problem for nonselfadjoint SturmLiouville operators," Math. Comp., v. 23, 1969, pp. 717-729. MR 0258291 (41:2938)
  • [6] E. A. Coddington & N. Levinson, Theory of Ordinary Differential Equations, McGraw-Hill, New York, 1955. MR 16, 1022. MR 0069338 (16:1022b)
  • [7] R. Courant & D. Hilbert, Methods of Mathematical Physics. Vol. I, Interscience, New York, 1953. MR 16, 426. MR 0065391 (16:426a)
  • [8] A. Friedman, Partial Differential Equations of Parabolic Type, Prentice-Hall, Englewood Cliffs, N.J., 1964, MR 31 #6062. MR 0181836 (31:6062)
  • [9] P. R. Garabedian, Partial Differential Equations, Wiley, New York, 1964. MR 28 #5247. MR 0162045 (28:5247)
  • [10] D. Greenspan, Approximate Solution of Initial-Boundary Parabolic Problems by Boundary Value Techniques, MRC Technical Summary Report No. 782, August 1967, U. S. Army Mathematics Research Center, University of Wisconsin, Madison, Wis.
  • [11] D. Greenspan, Lectures on the Numerical Solution of Linear, Singular, and Nonlinear Differential Equations, Prentice-Hall, Englewood Cliffs, N. J., 1968. MR 38 #2958. MR 0234642 (38:2958)
  • [12] A. S. Householder, The Theory of Matrices in Numerical Analysis, Blaisdell, Waltham, Mass., 1964. MR 30 #5475. MR 0175290 (30:5475)
  • [13] W. E. Milne, Numerical Calculus, Approximations, Interpolation, Finite Differences, Numerical Integration, and Curve Fitting, Princeton Univ. Press, Princeton, N. J., 1949. MR 10, 483 MR 0028671 (10:483g)
  • [14] M. H. Protter & H. F. Weinberger, Maximum Principles in Differential Equations, Prentice-Hall, Englewood Cliffs, N. J., 1967. MR 36 #2935. MR 0219861 (36:2935)
  • [15] R. D. Richtmyer, Difference Methods for Initial-Value Problems, 2nd ed.. Interscience Tracts in Pure and Appl. Math., no. 4, Interscience, New York, 1957; 2nd ed., with K. W. Morton, 1967. MR 20 #438; MR 36 #3515. MR 0093918 (20:438)
  • [16] R. V. Southwell, Relaxation Methods in Theoretical Physics. Vol. II: A Continuation of the Treatise Relaxation Methods in Engineering Science, Clarendon Press, Oxford, 1956. MR 18, 677. MR 0083197 (18:677c)
  • [17] R. S. Varga, Matrix Iterative Analysis, Prentice-Hall, Englewood Cliffs, N. J., 1962. MR 28 #1725. MR 0158502 (28:1725)
  • [18] D. M. Young, "Iterative methods for solving partial difference equations of elliptic type," Trans. Amer. Math. Soc., v. 76, 1954, pp. 92-111. MR 15, 562. MR 0059635 (15:562b)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 65.68

Retrieve articles in all journals with MSC: 65.68


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1970-0284019-9
Keywords: Boundary-value technique, parabolic equations, use of limiting steady-state, long times
Article copyright: © Copyright 1970 American Mathematical Society

American Mathematical Society