
On p. 56, line 7, the coefficient of the hypergeometric function

$$2F_1 \left(-\mu, \frac{\alpha - \beta - \mu}{2}; 1 + \frac{\alpha + \beta - \mu}{2}; \frac{x^2}{\lambda^2} \right)$$

should read

$$\frac{\lambda^{2\mu}}{\Gamma \left(1 + \frac{\beta - \alpha + \mu}{2} \right)}$$

instead of

$$\frac{1}{\Gamma \left(1 + \frac{\beta - \alpha + \mu}{2} \right)}$$

H. Satoh

In my review, RMT 72, Math. Comp., v. 17, 1963, pp. 463–464, of this very useful set of tables, I pointed out many defects in its format and printing. It is now noted that the 2nd and 3rd pages of the table for P = 1439 are interchanged. (The pages are unnumbered.)

D. S.

On p. 666, the final digit in Wolfram’s 48D value of ln 2000 should read 7, instead of 6.

On p. 655 and p. 669, respectively, the 48D natural logarithms of 1087 and 2174, calculated by Wolfram, are entirely correct as printed, except for the known error of transposition of digits in the 29th and 30th decimal places of ln 1087. This refutes last-digit changes of a unit in these logarithms proposed by C. R. Cosens, cited by R. C. Archibald in several places [1], [2], [3], and listed in the FMRC Index [4]. Accordingly, the 48D value of ln 1087 as reproduced by J. T. Peters [5] with correction of the transpositional error is entirely free from error.

Hans A. Larsen