
In Section 25.4.45, on p. 890, the numerator of the formula for the weights associated with the Gauss-Laguerre quadrature formula should read x_i instead of $(n!^2) x_i$.

This correction is consistent with the form of the Laguerre polynomials adopted in Chapter 22 of this handbook and used in the computation of the weight factors in Table 25.9 on p. 923.

Josef Stein

Institute for Pure and Applied Physical Sciences
University of California at San Diego
La Jolla, California 92037

Comparison of these tables with new, unpublished tables of Berger & McAllister \[1\] has revealed a number of errors in Aldis’s values.

Thus, in Table II (p. 220) the following corrections in ending digits are required:

<table>
<thead>
<tr>
<th>x</th>
<th>$K_0(x)$ for read</th>
<th>x</th>
<th>$K_1(x)$ for read</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.0</td>
<td>...6</td>
<td>9.0</td>
<td>...382</td>
</tr>
<tr>
<td>12.0</td>
<td>...302</td>
<td>10.0</td>
<td>...9</td>
</tr>
</tbody>
</table>

In Table III (p. 221) the following changes are indicated:

<table>
<thead>
<tr>
<th>x</th>
<th>$I_0(x)$ for read</th>
<th>$I_1(x)$ for read</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.0</td>
<td>...175</td>
<td>...228</td>
</tr>
<tr>
<td>9.0</td>
<td>...845</td>
<td>...428</td>
</tr>
<tr>
<td>10.0</td>
<td>...294</td>
<td>...247</td>
</tr>
<tr>
<td>11.0</td>
<td>...179</td>
<td>...818</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>x</th>
<th>$K_0(x)$ for read</th>
<th>$K_1(x)$ for read</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.0</td>
<td>...231</td>
<td>...898</td>
</tr>
<tr>
<td>8.0</td>
<td>...804</td>
<td>...4984</td>
</tr>
<tr>
<td>9.0</td>
<td>...458</td>
<td>...453</td>
</tr>
<tr>
<td>10.0</td>
<td>...066</td>
<td>...874</td>
</tr>
<tr>
<td>11.0</td>
<td>...653</td>
<td>...582</td>
</tr>
</tbody>
</table>

The discovery of errors in this table is particularly interesting in view of the relevant remark in the FMRC *Index* [2] that, “it seems probable that no error exists.”

J. W. W.
1. B. S. Berger & H. McAllister, *A Table of the Modified Bessel Functions K_0(x) and I_0(x) to at Least 60S for n = 0, 1 and x = 1, 2, . . ., 40*, ms. in UMT file. (See *Math. Comp.*, v. 24, 1970, p. 488, RMT 34.)

On p. 81, in Eq. (11) of Section 2.4 the second factor in the left member should read

\[b^{2v} F(-v, \frac{1}{2}x - \frac{1}{2}\beta - \frac{1}{2}v; 1 + \frac{1}{2}\beta + \frac{1}{2}x - \frac{1}{2}v; \frac{a^2}{b^2}) \]

instead of

\[F(-v, \frac{1}{2}x - \frac{1}{2}\beta - \frac{1}{2}v; 1 + \frac{1}{2}\beta + \frac{1}{2}x - \frac{1}{2}v; \frac{a^2}{b^2}). \]

H. Satoh

Department of Mathematics and Physics
Gunma University
Kiryu, Gunma, Japan

On p. 133, in formula 334.3c the denominator of the coefficient appearing in the summation on the right side should read \(a^2 + 4v^2b^2 \), instead of \(a^4 + 4v^2b^2 \).

Harry H. Denman

Department of Physics
Wayne State University
Detroit, Michigan 48202

On p. 165, l. 4, for \(\pi \), read 2\(\pi \), and in l. 6, replace 3 1415926535898732 by 6 2831853071795865.

The author has communicated the following major corrections in Table 1 on p. 417: the entries 361 and 689 should be deleted and three additional entries, namely, 165, 561, and 645, should be inserted.

J. W. W.

On p. 197 the vertical line in the right figure is erroneously marked \(u = 0 \) rather than \(u = \frac{1}{2} \).

Henry E. Fettis

Aerospace Research Laboratories
Wright-Patterson Air Force Base
Ohio 45433

On p. 56, line 7, the coefficient of the hypergeometric function

\[\binom{\alpha - \beta - \mu}{2} \left(\frac{1 + \frac{\beta - \alpha + \mu}{2}}{\Gamma\left(1 + \frac{\beta - \alpha + \mu}{2}\right)} \right) \]

should read

\[\frac{k^2}{\Gamma\left(1 + \frac{\beta - \alpha + \mu}{2}\right)} \]

instead of

\[\frac{1}{\Gamma\left(1 + \frac{\beta - \alpha + \mu}{2}\right)} \]

H. Satoh

In my review, RMT 72, *Math. Comp.*, v. 17, 1963, pp. 463–464, of this very useful set of tables, I pointed out many defects in its format and printing. It is now noted that the 2nd and 3rd pages of the table for \(P = 1439 \) are interchanged. (The pages are unnumbered.)

D. S.

On p. 666, the final digit in Wolfram’s 48D value of \(\ln 2000 \) should read 7, instead of 6.

On p. 655 and p. 669, respectively, the 48D natural logarithms of 1087 and 2174, calculated by Wolfram, are entirely correct as printed, except for the known error of transposition of digits in the 29th and 30th decimal places of \(\ln 1087 \). This refutes last-digit changes of a unit in these logarithms proposed by C. R. Cosens, cited by R. C. Archibald in several places [1], [2], [3], and listed in the FMRC Index [4].

Accordingly, the 48D value of \(\ln 1087 \) as reproduced by J. T. Peters [5] with correction of the transpositional error is entirely free from error.

Hans A. Larsen
TABLE ERRATA

Rens
6371 Store-Jyndevad
Denmark