Reviews and Descriptions of Tables and Books

Journal:
Math. Comp. **24** (1970), 475-502

DOI:
https://doi.org/10.1090/S0025-5718-70-99853-4

Full-text PDF

References | Additional Information

**[1]**Donald E. Knuth,*The art of computer programming*, 2nd ed., Addison-Wesley Publishing Co., Reading, Mass.-London-Amsterdam, 1975. Volume 1: Fundamental algorithms; Addison-Wesley Series in Computer Science and Information Processing. MR**0378456****[1]**W. E. Mansel,*Tables of natural and common logarithms to 110 decimals*, Edited by A. J. Thompson. Royal Society Mathematical Tables, Vol. 8, Published for the Royal Society at the Cambridge University Press, New York, 1964. MR**0166398****[2]**W. S. Aldis, "Tables for the solution of the equation ,"*Proc. Roy. Soc. London*, v. 64, 1899, pp. 203-223.**[1]**A. R. Curtis,*Tables of Jacobian elliptic functions whose arguments are rational fractions of the quarter period*, National Physical Laboratory Mathematical Tables, Vol. 7. Department of Scientific and Industrial Research, Her Majesty’s Stationery Office, London, 1964. MR**0167644****[2]**H. E. Salzer, "Quick calculation of Jacobian elliptic functions,"*Comm. ACM*, v. 5, 1962, p. 399.**[1]**Yudell L. Luke,*Integrals of Bessel functions*, McGraw-Hill Book Co., Inc., New York-Toronto-London, 1962. MR**0141801****[1]**O. P. Gupta and S. Luthra,*Partitions into primes*, Proc. Nat. Inst. Sci. India. Part A.**21**(1955), 181–184. MR**0074447****[2]**M. Abramowitz & I. A. Stegun, editors,*Handbook of Mathematical Functions*, Dover, New York, 1965; Section 24, "Combinatorial analysis" (see 24.2.1, 24.2.2, Table 24.5).**[3]**G. H. Hardy & S. Ramanujan, "Asymptotic formulae for the distribution of integers of various types,"*Proc. London Math. Soc.*, (2), v. 16, 1917, pp. 112-132; see Eq. (5.281).**[1]**David W. Kammler,*Numerical solution of the Dirichlet problem for systems of circular conductors between parallel ground lines*, Math. Comp.**23**(1969), 29–36. MR**0238502**, https://doi.org/10.1090/S0025-5718-1969-0238502-4**[2]**UMT**50**,*Math. Comp.*, v. 23, 1969, p. 683.**[3]**D. H. Lehmer, Emma Lehmer, and Daniel Shanks,*Integer sequences having prescribed quadratic character*, Math. Comp.**24**(1970), 433–451. MR**0271006**, https://doi.org/10.1090/S0025-5718-1970-0271006-X**[1]**S. Ramanujan, "On certain arithmetical functions,"*Trans. Cambridge Philos. Soc.*, v. 22, 1916, pp. 159-184; see especially §§ 16-18. A short table of for is given here.**[2]**G. N. Watson,*A table of Ramanujan’s function 𝜏(𝑛)*, Proc. London Math. Soc. (2)**51**(1949), 1–13. MR**0028887**, https://doi.org/10.1112/plms/s2-51.1.1**[3]**D. H. Lehmer,*Tables of Ramanujan*, UMT**101**,*MTAC*, v. 4, 1950, p. 162.**[4]**R. E. Barnhill and J. A. Wixom,*Tables related to quadratures with remainders of minimum norm. I*, Math. Comp.**21**(1967), no. 99, loose microfiche suppl, C1–D4. MR**0223091**, https://doi.org/10.2307/2003240**[5]**G. H. Hardy,*Ramanujan*, Chelsea reprint, New York, 1959, Chapter X and §§9.17, 9.18.**[1]**Derrick Henry Lehmer,*Guide to Tables in the Theory of Numbers*, Bulletin of the National Research Council, no. 105, National Research Council, Washington, D. C., 1941. MR**0003625**

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-70-99853-4

Article copyright:
© Copyright 1970
American Mathematical Society