Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Computation of best one-sided $ L\sb{1}$ approximation


Author: James T. Lewis
Journal: Math. Comp. 24 (1970), 529-536
MSC: Primary 65.20; Secondary 41.00
DOI: https://doi.org/10.1090/S0025-5718-1970-0273780-5
MathSciNet review: 0273780
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A computational procedure based on linear programming is presented for finding the best one-sided $ {L_1}$ approximation to a given function. A theorem which ensures that the computational procedure yields approximations which converge to the best approximation is proved. Some numerical examples are discussed.


References [Enhancements On Off] (What's this?)

  • [1] R. Bojanic & R. Devore, "On polynomials of best one sided approximation," Enseignement Math. (2), v. 12, 1966, pp. 139-164. MR 35 #4647. MR 0213790 (35:4647)
  • [2] P. J. Davis, Interpolation and Approximation, Blaisdell, Waltham, Mass., 1963. MR 28 #393. MR 0157156 (28:393)
  • [3] R. Devore, "One-sided approximation of functions," J. Approximation Theory, v. 1, 1969, pp. 11-25. MR 0230018 (37:5584)
  • [4] S. GASS, Linear Programming: Methods and Applications, McGraw-Hill, New York, 1958. MR 20 #3037. MR 0096554 (20:3037)
  • [5] G. Hadley, Linear Programming, Addison-Wesley Series in Industrial Management, Addison-Wesley, Reading, Mass., 1962. MR 24 #B1669. MR 0135622 (24:B1669)
  • [6] W. Kammerer, Optimal Approximations of Functions: One-Sided Approximation and Extrema Preserving Approximations, Doctoral Thesis, Univ. of Wisconsin, Madison, Wisconsin, 1959.
  • [7] P. J. Laurent, "Approximation uniforme des fonctions continues sur un compact avec constraintes de type inégalité," Rev. Française Informat. Recherche Opérationnelle, v. 1, 1967, no. 5, pp. 81-95. MR 37 #1855. MR 0226265 (37:1855)
  • [8] J. T. Lewis, Approximation with Convex Constraints, Doctoral thesis, Brown University, Providence, R. I., 1969.
  • [9] T. S. Motzkin & J. L. Walsh, "The least $ p$th power polynomials on a finite point set," Trans. Amer. Math. Soc., v. 83, 1956, pp. 371-396. MR 18, 479. MR 0081991 (18:479g)
  • [10] P. Rabinowitz, "Applications of linear programming to numerical analysis," SIAM Rev., v. 10, 1968, pp. 121-159. MR 37 #2397. MR 0226810 (37:2397)
  • [11] T. J. Rivlin, An Introduction to the Approximation of Functions, Blaisdell, Waltham, Mass., 1969. MR 0249885 (40:3126)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 65.20, 41.00

Retrieve articles in all journals with MSC: 65.20, 41.00


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1970-0273780-5
Keywords: One-sided approximation, $ {L_1}$ approximation, convex constraints, computation of best approximation, linear programming
Article copyright: © Copyright 1970 American Mathematical Society

American Mathematical Society