Consecutive power residues or nonresidues

Authors:
J. R. Rabung and J. H. Jordan

Journal:
Math. Comp. **24** (1970), 737-740

MSC:
Primary 10.06

DOI:
https://doi.org/10.1090/S0025-5718-1970-0277469-8

MathSciNet review:
0277469

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: For any positive integers and , A. Brauer [1] has shown that there exists a number such that, for any prime number , a sequence of consecutive numbers occurs in at least one th-power class modulo . For particular and , one is sometimes able to find a least bound, , before, or at which, the first member of such a sequence must appear. In this paper, we describe a method used to compute and .

**[1]**A. Brauer, "Über Sequenzen von Potenzresten,"*S.-B. Preuss. Akad. Wiss. Phys. Math. Kl.*, v. 1928, pp. 9-16.**[2]**W. Mills, "Characters with preassigned values,"*Canad. J. Math.*, v. 15, 1963, pp. 169-171. MR.**28**#71. MR**0156828 (28:71)****[3]**M. Dunton, "Bounds for pairs of cubic residues,"*Proc. Amer. Math. Soc.*, v. 16, 1965, pp. 330-332. MR**30**#3055. MR**0172838 (30:3055)****[4]**D. Lehmer, E. Lehmer, W. Mills & J. Selfridge, "Machine proof of a theorem on cubic residues,"*Math. Comp.*, v. 16, 1962, pp. 407-415. MR**28**#5578. MR**0162379 (28:5578)****[5]**D. Lehmer & E. Lehmer, "On runs of residues,"*Proc. Amer. Math. Soc.*, v. 13, 1962, pp. 102-106. MR.**25**#2025. MR**0138582 (25:2025)****[6]**D. Lehmer, E. Lehmer & W. Mills, "Pairs of consecutive power residues,"*Canad. J. Math.*, v. 15, 1963, pp. 172-177. MR**26**#3660. MR**0146134 (26:3660)****[7]**W. Mills & R. Bierstedt, "On the bound for a pair of consecutive quartic residues modulo a prime*p," Proc. Amer. Math. Soc.*, v. 14, 1963, pp. 628-632. MR**0154843 (27:4787)****[8]**J. Brillhart, D. Lehmer & E. Lehmer, "Bounds for pairs of consecutive seventh and higher power residues,"*Math. Comp.*, v. 18, 1964, pp. 397-407. MR**29**#2214. MR**0164923 (29:2214)****[9]**R. L. Graham, "On quadruples of consecutive th power residues,"*Proc. Amer. Math. Soc.*, v. 15, 1964, pp. 196-197. MR.**28**#2078. MR**0158855 (28:2078)****[10]**J. Jordan, "Pairs of consecutive power residues or non-residues,"*Canad. J. Math.*, v. 16, 1964, pp. 310-314. MR**28**#5028. MR**0161824 (28:5028)**

Retrieve articles in *Mathematics of Computation*
with MSC:
10.06

Retrieve articles in all journals with MSC: 10.06

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1970-0277469-8

Keywords:
th-power character,
th-power residues,
th-power nonresidues,
th-power class

Article copyright:
© Copyright 1970
American Mathematical Society