Lower bounds for the disk packing constant
Author:
David W. Boyd
Journal:
Math. Comp. 24 (1970), 697704
MSC:
Primary 52.45; Secondary 40.00
MathSciNet review:
0278193
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: An osculatory packing of a disk,, is an infinite sequence of disjoint disks, , contained in , chosen so that, for , has the largest possible radius, , of all disks fitting in . The exponent of the packing, , is the least upper bound of numbers, , such that . Here, we present a number of methods for obtaining lower bounds for , based on obtaining weighted averages of the curvatures of the . We are able to prove that . We use a number of wellknown results from the analytic theory of matrices.
 [1]
H.
S. M. Coxeter, The problem of Apollonius, Amer. Math. Monthly
75 (1968), 5–15. MR 0230204
(37 #5767)
 [2]
H.
S. M. Coxeter, Loxodromic sequences of tangent spheres,
Aequationes Math. 1 (1968), 104–121. MR 0235456
(38 #3765)
 [3]
G. H. Hardy, J. E. Littlewood & G. Pólya, Inequalities, Cambridge Univ. Press, New York, 1934.
 [4]
K.
E. Hirst, The Apollonian packing of circles, J. London Math.
Soc. 42 (1967), 281–291. MR 0209981
(35 #876)
 [5]
Alston
S. Householder, The theory of matrices in numerical analysis,
Blaisdell Publishing Co. Ginn and Co. New YorkTorontoLondon, 1964. MR 0175290
(30 #5475)
 [6]
Z.
A. Melzak, Infinite packings of disks, Canad. J. Math.
18 (1966), 838–852. MR 0203594
(34 #3443)
 [7]
Z.
A. Melzak, On the solidpacking constant for
circles, Math. comp. 23 (1969), 169–172. MR 0244866
(39 #6179), http://dx.doi.org/10.1090/S00255718196902448668
 [8]
H. Wielandt, Topics in the Analytic Theory of Matrices, Lecture Notes, University of Wisconsin, 1967.
 [9]
John
B. Wilker, Open disk packings of a disk, Canad. Math. Bull.
10 (1967), 395–415. MR 0215198
(35 #6041)
 [1]
 H. S. M. Coxeter, "The Problem of Apollonius," Amer. Math. Monthly, v. 75, 1968, pp. 515. MR 37 #5767. MR 0230204 (37:5767)
 [2]
 H. S. M. Coxeter, "Loxodromic sequences of tangent spheres," Aequationes Math., v. 1, 1968, pp. 104121. MR 38 #3765. MR 0235456 (38:3765)
 [3]
 G. H. Hardy, J. E. Littlewood & G. Pólya, Inequalities, Cambridge Univ. Press, New York, 1934.
 [4]
 K. E. Hirst, "The Apollonian packing of circles," J. London Math. Soc., v. 42, 1967, pp. 281291. MR 35 #876. MR 0209981 (35:876)
 [5]
 A. S. Householder, The Theory of Matrices in Numerical Analysis, Blaisdell, Waltham, Mass., 1964. MR 30 #5475. MR 0175290 (30:5475)
 [6]
 Z. A. Melzak, "Infinite packings of disks," Canad. J. Math., v. 18, 1966, pp. 838852. MR 34 #3443. MR 0203594 (34:3443)
 [7]
 Z. A. Melzak, "On the solidpacking constant for circles," Math. Comp., v. 23, 1969, pp. 169172. MR 0244866 (39:6179)
 [8]
 H. Wielandt, Topics in the Analytic Theory of Matrices, Lecture Notes, University of Wisconsin, 1967.
 [9]
 J. B. Wilker, "Open disk packings of a disk," Canad. Math. Bull., v. 10, 1967, pp. 395 415. MR 35 #6041. MR 0215198 (35:6041)
Similar Articles
Retrieve articles in Mathematics of Computation
with MSC:
52.45,
40.00
Retrieve articles in all journals
with MSC:
52.45,
40.00
Additional Information
DOI:
http://dx.doi.org/10.1090/S00255718197002781938
PII:
S 00255718(1970)02781938
Keywords:
Packing of disks,
exponent of packing,
nonnegative matrix,
numerical computation of eigenvalues,
Descartes's formula,
Soddy's formula,
osculatory packing,
Apollonian packing
Article copyright:
© Copyright 1970
American Mathematical Society
