Remark on a Conjecture of Erdős on Binomial Coefficients

By Andrzej Makowski

Abstract. A conjecture attributed to Erdős concerning the Diophantine equation

\[2 \binom{x + n - 1}{n} = \binom{y + n - 1}{n} \]

is shown to be false.

M. Wunderlich [2] attributes the following conjecture to P. Erdős:

The equation

\[2 \binom{x + n - 1}{n} = \binom{y + n - 1}{n} \]

has only one solution in positive integers: \(x = n, y = n + 1 \).

Because (1) has infinitely many solutions for \(n = 2 \) (cf. [1, p. 30]) the assumption \(n \geq 3 \) must surely be added. But that does not suffice.

Observe that for \(b - a \geq 3 \) the equality

\[s \binom{a}{2} = t \binom{b}{2} \]

implies

\[s \binom{b - 2}{b - a} = t \binom{b}{b - a} \].

Because (2) has infinitely many solutions in integers \(a, b \) for \(s = 2, t = 1 \), we obtain infinitely many counterexamples to the conjecture of Erdős, viz. \(n = b - a, x = a - 1, y = a + 1 \), where

\[2 \binom{a}{2} = \binom{b}{2} \]

For example,

\[2 \binom{19}{6} = \binom{21}{6} \]

is a solution of (1).

Probably the conjecture is true when we require \(y - x \geq 3 \).

Institute of Mathematics
University of Warsaw
Warsaw, Poland

Received August 21, 1969, revised November 10, 1969.

AMS Subject Classifications. Primary 1013; Secondary 0505.

Key Words and Phrases. Diophantine equation.

Copyright © 1971, American Mathematical Society

705