A Posteriori Bounds in the Numerical Solution of Mildly Nonlinear Parabolic Equations*

By Alfred Carasso

Abstract. We derive a posteriori bounds for \((V - \hat{V})\) and its difference quotient \((V - \hat{V})_x\), where \(V\) and \(\hat{V}\) are, respectively, the exact and computed solution of a difference approximation to a mildly nonlinear parabolic initial boundary problem, with a known steady-state solution. It is assumed that the computation is over a long interval of time. The estimates are valid for a class of difference approximations, which includes the Crank-Nicolson method, and are of the same magnitude for both \((V - \hat{V})\) and \((V - \hat{V})_x\).

1. Introduction. Let \(\mathcal{R}\) be the strip \(\{(x, t) | 0 < x < 1, t > 0\}\) in the \((x, t)\) plane and consider the mixed problem

\[
\frac{\partial u}{\partial t} = \left[a(x, t) \frac{\partial u}{\partial x} \right]_x + b(x, t) \frac{\partial u}{\partial x} - f(x, t, u), \quad (x, t) \in \mathcal{R},
\]

\[
u(x, 0) = \chi(x), \quad 0 \leq x \leq 1,
\]

\[
u(0, t) = \phi_1(t), \quad \nu(1, t) = \phi_2(t), \quad t > 0.
\]

We assume that \(a(x, t), b(x, t)\) are "smooth" bounded functions on \(\mathcal{R}\), with \(a(x, t) \geq a_0 > 0\), and that \(f(x, t, w)\) is, at least once, continuously differentiable on \(\mathcal{R}\times[-\infty, w < +\infty]\) with \(\partial f/\partial w \geq 0\). Moreover, \(\partial f/\partial w\) is to remain bounded if \(w\) stays bounded. The coefficients, data, and \(f\) are assumed such as to assure the existence and uniqueness of a solution \(u(x, t)\), four times boundedly differentiable in \(\mathcal{R}\), and converging to a steady state value \(u^*(x)\), as \(t \to \infty\). We assume \(u^*(x)\) is known and that, by means of asymptotic formulae and the like, one can estimate \(||u^*(x, t) - u^*||_2\) as a function of \(t\), for \(t\) sufficiently large. The analytical theory for such problems is discussed in Friedman [5].

Several finite-difference methods for the numerical computation of (1.1) have been shown to converge; see for example [4], [6], [8], [10], [3] and their references, and especially [9] for the linear case.

Because of round-off error, and the fact that one may need to use iterative methods at each time step to solve the nonlinear difference equations, only an approximation \(\hat{V}\) to the exact solution \(V\) of the difference equations can be computed in general. In [3], a "boundary-value" method for (1.1) was analyzed. This method yields an a posteriori estimate for \(V - \hat{V}\) by simply computing residuals. In the present note we make use of some of the results in [2] and [3] to derive such an estimate for a class of stable "marching" procedures for (1.1). Unlike the situation in [3], however, the estimate will involve bounds on the derivatives of \(u\). It is interesting that the estimate is of the same magnitude for both \((V - \hat{V})\) and its difference quotient \((V - \hat{V})_x\).

Received September 18, 1969.

AMS 1969 subject classifications. Primary 6568, 6580.

Key words and phrases. Parabolic equations, Crank-Nicolson method, limiting steady state, computations over long times.

* Supported by NSF Grant GP-13024.
2. Notation. Let \(\Omega_T \) be the rectangle \(\{(x, t) \mid 0 < x < 1, 0 < t < T\} \) and let \(M \) and \(N \) be positive integers. Let \(\Delta x = 1/(M + 1), \Delta t = T/(N + 1) \), and introduce a mesh over \(\Omega_T \) by means of the lines \(x = k\Delta x, k = 0, 1, \cdots, M + 1, \) \(t = n\Delta t, n = 0, 1, \cdots, N + 1 \). Let \(v_n^k \) denote \(v(k\Delta x, n\Delta t) \). Define \(\vec{v}^n \) to be the \(M \)-component vector

\[
\vec{v}^n = \{v_1^n, v_2^n, \cdots, v_M^n\}^T
\]

and let \(\vec{V} \) be the "block" vector of \(MN \) components

\[
\vec{V} = \{\vec{v}^1, \vec{v}^2, \cdots, \vec{v}^N\}^T.
\]

Although we will be dealing with real-valued mesh functions, it is convenient to define scalar products and norms for complex vectors. For any two \(M \) vectors \(\vec{v}^n, \vec{w}^n \) let

\[
\langle \vec{v}^n, \vec{w}^n \rangle = \Delta x \sum_{k=1}^{M} v_k^n w_k^n
\]

and let

\[
\| \vec{v}^n \|^2 = \langle \vec{v}^n, \vec{v}^n \rangle.
\]

Let

\[
\| \vec{v}^n \|^2 = \Delta x \sum_{k=0}^{M} \frac{|v_{k+1}^n - v_k^n|^2}{\Delta x^2}
\]

where \(v_0^n, v_{M+1}^n \) are defined to be zero.

For block vectors \(\vec{V}, \vec{W} \) define

\[
\langle \vec{V}, \vec{W} \rangle = \Delta t \sum_{n=1}^{N} \langle \vec{v}^n, \vec{w}^n \rangle
\]

and let

\[
\| \vec{V} \|^2 = \langle \vec{V}, \vec{V} \rangle.
\]

Finally, for a square matrix \(A \), define \(\|A\| \) in terms of vector norms, i.e., as

\[
\|A\| = \sup_{\|X\| = 1} \|AX\|,
\]

the supremum being taken over all complex vectors.

3. Difference Approximations to (1.1). Let \(\vec{U}^n \) be the \(M \)-vector consisting of the solution to (1.1) evaluated at the interior mesh points of the line \(t = n\Delta t \) and let \(\vec{V}^n \) be the corresponding exact solution of the difference equations used to approximate (1.1). Define \(\vec{E}^n = \vec{V}^n - \vec{U}^n \). We will consider the class of marching schemes which lead to a priori estimates of the form

\[
\left(\|E^n\|^2 + \|E_r^n\|^2 \right)^{1/2} \leq K(T)(\Delta t^{r+1} + \Delta x^{s+1}), \quad n\Delta t \leq T,
\]

where \(r \) and \(s \) are positive integers and \(K(T) \) is known. An example of a difference
scheme for (1.1) satisfying (3.1) with \(r = s = 1 \), is the Crank-Nicolson version analyzed in [8]. In general \(K(T) \) will involve bounds on \(a, b, f, u \) and their derivatives, as well as a growth factor. The reason for the latter is that, even if the exact solution to (1.1) decays asymptotically to a steady state, the exact solution of a stable, consistent, difference approximation may grow exponentially as \(n\Delta t \to \infty \), \(\Delta t \) fixed. Hence, we cannot expect \(K(T) \) to remain bounded as \(T \to \infty \), in general. We remark, however, that in [7], Kreiss and Widlund have shown how to construct schemes (for linear time-dependent problems with periodic boundary conditions) which preserve the asymptotic behavior of \(u(x, t) \) provided \(|b| \Delta t/\Delta x < 1 \). In the following we will derive bounds for \(\|\tilde{V} - V\|_2 \) and \(\|\tilde{V}_x - V_x\|_2 \) for computations of (1.1) up to some "large" but fixed time \(T \). These bounds will depend on \(K(T) \).

We begin by deriving new finite-difference equations for the exact solution \(\{V^n\} \) of a difference scheme used to approximate (1.1). Since \(V^n = U^n + E^n \), we have

\[
\frac{V_{k+1}^n - V_k^n}{2\Delta t} = \frac{u_{k+1}^n - u_k^n}{2\Delta t} + \frac{e_{k+1}^n - e_k^n}{2\Delta t} = \left(\frac{\partial u}{\partial t} \right)_k^n + \frac{e_{k+1}^n - e_k^n}{2\Delta t} + \frac{\Delta t^2}{6} (u_{ttri}),
\]

where "\(\tilde{V} \)" represents a mean value of \(\psi \) called for by Taylor's theorem. From (1.1) we have

\[
\left(\frac{\partial u}{\partial t} \right)_k^n + \frac{\Delta t^2}{6} (u_{ttri}) = a_{k+1/2}^n (u_{k+1}^n - u_k^n) - a_{k-1/2}^n (u_k^n - u_{k-1}^n) + b_k^n \frac{(u_{k+1}^n - u_{k-1}^n)}{2\Delta x} - f(k\Delta x, n\Delta t, u_k^n) + \tau_k^n,
\]

where

\[
\tau_k^n = \frac{\Delta t^2}{6} (u_{ttri})_k.
\]

From (3.2) and (3.3) we have

\[
\frac{V_{k+1}^n - V_k^n}{2\Delta t} = a_{k+1/2}^n (V_{k+1}^n - V_k^n) - a_{k-1/2}^n (V_k^n - V_{k-1}^n) + \frac{e_{k+1}^n - e_k^n}{2\Delta x} - \frac{b_k^n (V_{k+1}^n - V_{k-1}^n)}{2\Delta x} - f(k\Delta x, n\Delta t, u_k^n)
\]

\[
+ \frac{e_{k+1}^n - e_k^n}{2\Delta t} - b_k^n \frac{(e_{k+1}^n - e_{k-1}^n)}{2\Delta x} - \frac{a_{k+1/2}^n (e_{k+1}^n - e_k^n) - a_{k-1/2}^n (e_k^n - e_{k-1}^n)}{\Delta x^2} + \tau_k^n,
\]

\(k = 1, \ldots, M, \quad n = 1, 2, \ldots \).
with the initial boundary data

\[v_k^0 = \chi(k\Delta x), \quad k = 1, \ldots, M, \]
\[v_0^n = \varphi_1(n\Delta t), \quad v_{M+1}^n = \varphi_2(n\Delta t), \quad n = 1, 2, \ldots. \]

With \(T = (N + 1)\Delta t \) we now consider the system formed by equations (3.5) for \(n = 1, 2, \ldots, N \). It is convenient to write this system in matrix-vector notation.

Let \(L^n \) and \(B^n \) be the tridiagonal \(M \times M \) matrices defined by

\[L^n = \frac{1}{\Delta x^2} \begin{bmatrix} (a_1^n + 2a_1^n) & -a_1^n/2 & 0 & \cdots & 0 & -a_{M-1}^n/2 \\ -a_1^n/2 & (a_2^n + 2a_2^n) & -a_2^n/2 & \cdots & 0 & -a_{M-2}^n/2 \\ \vdots & \vdots & \ddots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & (a_{M-1}^n + 2a_{M-1}^n) & -a_{M-1}^n/2 & 0 \\ 0 & 0 & \cdots & 0 & (a_M^n + 2a_M^n) & -a_M^n/2 \end{bmatrix}, \]

\[B^n = \frac{1}{2\Delta x} \begin{bmatrix} b_1^n & 0 & \cdots & 0 \\ b_2^n & b_2^n & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & b_M^n \end{bmatrix}, \]

and define the \(M \)-vectors \(\tau^n, F^n(U), \) and \(G^n \) by

\[\tau^n = \{ \tau_1^n, \tau_2^n, \ldots, \tau_M^n \}^T, \]
\[F^n(U) = \{ f_1^n(u), f_2^n(u), \ldots, f_M^n(u) \}^T, \]

where

\[f_k^n(u) = f(k\Delta x, n\Delta t, u_k^n) \]

and

\[G^n = \frac{1}{\Delta x^2} \begin{bmatrix} (a_1^n + 1/2) \Delta x \partial_x \varphi_1(\Delta x), 0, 0, \cdots, 0, (a_M^n + 1/2) \Delta x \partial_x \varphi_2(\Delta x) \end{bmatrix}^T. \]

We may then write (3.5), (3.6) as

\[\frac{V^{n+1} - V^{n-1}}{2\Delta t} = -L^n V^n - B^n V^n - F^n(U) + \tau^n + G^n + \frac{E^{n+1} - E^{n-1}}{2\Delta t} + B^n E^n + L^n E^n, \quad n = 1, 2, \ldots, N. \]

Some further definitions will enable us to write (3.12) in "block" form. Define the \(MN \times MN \) block tridiagonal matrix \(P \) by (with \(\sigma = 1/2\Delta t \))

\[P = \begin{bmatrix} (L^1 + B^1) & \sigma I & & \\ -\sigma I & & & \\ & \ddots & \ddots & \ddots \\ & & \sigma I & (L^N + B^N) & \sigma I \end{bmatrix}. \]
For any real block vector ξ define the $M \times M$ diagonal matrix $C^*(\xi)$ by

$$C^*(\xi) = \begin{bmatrix} f_\omega(\Delta x, n\Delta t, \xi_1^1) & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & f_\omega(\Delta x, n\Delta t, \xi_M^M) \end{bmatrix}$$

and let $C(\xi)$ be the block matrix

$$C(\xi) = \begin{bmatrix} C^*(\xi) & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & C^*(\xi) \end{bmatrix}.$$

Finally, define the block vectors F, G^*, H, and τ by

$$F = \{ F_1, F_2, \ldots, F_N \}^T,$$

$$G^* = \left\{ G^1 + \frac{V_0}{2\Delta t}, G^2, \ldots, G^N - \frac{V^{N+1}}{2\Delta t} \right\}^T,$$

$$H = \left\{ \frac{E^2 - E^0}{2\Delta t} + (L^1 + B^1)E^1, \ldots, \frac{E^{N+1} - E^{N-1}}{2\Delta t} + (L^N + B^N)E^N \right\}^T,$$

$$\tau = \{ \tau^1, \tau^2, \ldots, \tau^N \}^T.$$

With this notation we have from (3.12)

$$PV = -F(U) + G^* + \tau + H.$$

Lemma 1. Let D be a diagonal matrix of order MN with nonnegative real entries and let

$$Q = P + D.$$

Let $b(x, t)$ in (1.1) satisfy

$$\left| \frac{\partial b}{\partial x} \right| \leq b_1 < 2a_0\pi^2, \quad \forall (x, t) \in \overline{\Omega}_T.$$

Fix $\epsilon > 0$ so that $a_0\pi^2 - b_1/2 - \epsilon \geq \omega > 0$. If $\Delta x \leq (12\epsilon/a_0\pi^2)^{1/2}$, Q^{-1} exists and

$$\sup_{x \in \partial \Omega, \|x\|_1 \leq 1} \|Q^{-1}X\|_2 \leq \frac{1}{\omega}.$$

Moreover, if $Q\omega = Z$, where Z is real we have

$$\|W\|_2 \leq \left(\frac{2\omega + b_1}{2a_0\omega^2} \right)^{1/2} \|Z\|_2.$$

Proof. See [3, Lemma 1].

Remark. If

$$D = \begin{bmatrix} \Lambda & 0 \\ & \ddots \\ 0 & \cdots & \Lambda \end{bmatrix},$$
where Λ is a diagonal $M \times M$ matrix with nonnegative real entries, and if $a(x, t)$, $b(x, t)$ are independent of t, Q^{-1} exists and remains bounded for all sufficiently small Δx independently of hypothesis (3.22). This observation is relevant to the case where (1.1) is linear with time independent coefficients, i.e., $a = a(x)$, $b = b(x)$, and $f(x, t, u) = c(x)u + h(x, t)$ with $c(x) \geq 0$. See [1, Lemma 1] and [2, Lemma 4.2].

4. A Posteriori Bounds. For each $n = 1, 2, \cdots, N + 1$, let \tilde{V}^n be the computed solution at $t = n\Delta t$, of the difference equations used to approximate (1.1) and consider the block vector

$$\tilde{V} = \{ \tilde{V}^1, \tilde{V}^2, \cdots, \tilde{V}^N \}^T.$$

Define \tilde{G} to be the block vector obtained from G when V^{N+1} is replaced by \tilde{V}^{N+1}.

Compute the block vector R given by

$$R = P\tilde{V} + F(\tilde{V}) - \tilde{G}.$$

Subtracting (4.2) from (3.20) we have

$$P(V - \tilde{V}) = -F(U) + F(\tilde{V}) + (G^* - \tilde{G}^*) + \tau + H - R$$

for some intermediate real block vectors ξ and Ψ on using the mean value theorem. Hence,

$$[P + C(\Psi)](V - \tilde{V}) = \tau + H - R + (G^* - \tilde{G}^*) - C(\xi)(U - V).$$

Since $f_\omega \geq 0$, $C(\Psi)$ is a diagonal matrix with nonnegative real entries. By Lemma 1, we may estimate $||V - \tilde{V}||_2$, $||V_n - \tilde{V}_n||_2$, provided we can estimate the terms other than R on the right-hand side of (4.4). We will make use of the a priori estimate (3.1).

Let a^*, b^* be upper bounds for $a(x, t)$ and $|b(x, t)|$, respectively, in Ω_T.

Since

$$\left(L^n E^n \right)_k = \frac{1}{\Delta x^2} a^* a_{k-1/2}(\varepsilon_k^* - \varepsilon_{k-1}) + \frac{1}{\Delta x^2} a^* a_{k+1/2}(\varepsilon_k^* - \varepsilon_{k+1})$$

we have

$$||L^n E^n||_2 \leq a^* \left\{ \Delta x \sum_{k=1}^{M} \frac{(\varepsilon_k^* - \varepsilon_{k-1})^2}{\Delta x^2} \right\}^{1/2} + a^* \left\{ \Delta x \sum_{k=1}^{M} \frac{(\varepsilon_{k+1}^* - \varepsilon_k^*)^2}{\Delta x^2} \right\}^{1/2}$$

$$\leq \frac{2a^*}{\Delta x} ||E^n||_2 \leq 2a^* K(T) \left(\frac{\Delta t^{r+1}}{\Delta x} + \Delta x^r \right).$$

Similarly,

$$||B^n E^n||_2 \leq b^* K(T)(\Delta x^{s+1} + \Delta t^{r+1})$$

and we have

$$\frac{1}{2\Delta t} ||E^{n+1} - E^{n-1}||_2 \leq K(T) \left(\Delta t^r + \Delta x^{s+1} \right).$$

Hence, we can estimate $||H||_2$ by
We estimate $||G^* - \hat{G}^*||_2$ as follows: First,

\begin{equation}
||G^* - \hat{G}^*||_2 = \frac{1}{2\Delta t^{1/2}} ||\nabla^{N+1} - V^{N+1}||_2.
\end{equation}

If U^* is the M-vector consisting of the steady state solution, we have from (3.1)

\begin{equation}
||G^* - \hat{G}^*||_2 \leq \frac{1}{2\Delta t^{1/2}} \left(||\nabla^{N+1} - U^*||_2 + ||U^{N+1} - U^*||_2 \right)
\end{equation}

\begin{equation}
+ K(T)\left(\frac{\Delta r^{r+1} + \Delta x^{r+1}}{2\Delta t^{1/2}}\right).
\end{equation}

Since we assume U^* is known, and that $\{u(x, t) - u^*(x)\}$ can be estimated as a function of t, the right-hand side of (4.10) can be estimated.

We may estimate $||C(\xi)||_2$ by using the a priori estimate (3.1), since ξ is an intermediate value, and since $f_u(x, t, w)$ is bounded if w is bounded. This means we can find a constant K_1 such that

\begin{equation}
||C(\xi)||_2 \leq K_1 K(T) T^{1/2} (\Delta r^{r+1} + \Delta x^{r+1}).
\end{equation}

Finally, we assume a bound is known for the derivatives of u occurring in (3.4) so that

\begin{equation}
||\tau||_2 \leq T^{1/2} K_2 (\Delta r^2 + \Delta x^2), \text{ for some constant } K_2.
\end{equation}

Using Lemma 1 and (4.8), (4.10), (4.11) and (4.12) we have

Theorem. Let $b(x, t)$ in (1.1) satisfy $|\partial b/\partial x| \leq b_1 < 2a_0\pi^2$ and fix $\epsilon > 0$ so that

\begin{equation}
a_0^\omega - a_1 + \epsilon > 0. \text{ Let}
\end{equation}

\begin{equation}
\Delta x \leq \left(\frac{12\epsilon}{a_0^\omega}\right)^{1/2}.
\end{equation}

Let $V = \{V^n\}$ and $\hat{V} = \{\hat{V}^n\}$ be, respectively, the exact and computed solution of a difference approximation for (1.1) satisfying (3.1). Finally, let R be defined by (4.2). Then

\begin{equation}
||V - \hat{V}||_2 \leq \frac{1}{2\Delta t^{1/2}} \left(||\nabla^{N+1} - U^*||_2 + ||U^{N+1} - U^*||_2 \right) + \frac{||R||_2}{\omega}
\end{equation}

\begin{equation}
+ \frac{T^{1/2} K_2 (\Delta r^2 + \Delta x^2)}{\omega}
\end{equation}

\begin{equation}
+ \frac{T^{1/2} K(T) (\Delta r^{r+1} + \Delta x^{r+1})}{\omega} \left\{ K_1 + \frac{1}{2(T\Delta t)^{1/2}} b^* + \frac{2a^*}{\Delta x} + \frac{1}{\Delta t} \right\}
\end{equation}

and

\begin{equation}
||V_\tau - \hat{V}_\tau||_2
\end{equation}

\begin{equation}
\leq \left(\frac{2\omega + b_1}{2a_0\omega^2}\right)^{1/2} \left(\frac{1}{2\Delta t^{1/2}} (||\nabla^{N+1} - U^*||_2 + ||U^{N+1} - U^*||_2) + ||R||_2 + K_2 T^{1/2} (\Delta r^2 + \Delta x^2) + K(T) T^{1/2} (\Delta r^{r+1} + \Delta x^{r+1}) \right)
\end{equation}

\begin{equation}
\cdot \left(K_1 + \frac{1}{2(T\Delta t)^{1/2}} + b^* + \frac{2a^*}{\Delta x} + \frac{1}{\Delta t} \right).
\end{equation}
ALFRED CARASSO

The University of New Mexico
Albuquerque, New Mexico 87106