Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Triangular elements in the finite element method


Authors: James H. Bramble and Miloš Zlámal
Journal: Math. Comp. 24 (1970), 809-820
MSC: Primary 65.66
DOI: https://doi.org/10.1090/S0025-5718-1970-0282540-0
MathSciNet review: 0282540
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: For a plane polygonal domain $ \Omega $ and a corresponding (general) triangulation we define classes of functions $ {p_m}(x,y)$ which are polynomials on each triangle and which are in $ {C^{(m)}}(\Omega )$ and also belong to the Sobolev space $ W_2^{(m + 1)}(\Omega )$. Approximation theoretic properties are proved concerning these functions. These results are then applied to the approximate solution of arbitrary-order elliptic boundary value problems by the Galerkin method. Estimates for the error are given. The case of second-order problems is discussed in conjunction with special choices of approximating polynomials.


References [Enhancements On Off] (What's this?)

  • [1] S. Agmon, Lectures on Elliptic Boundary Value Problems, Van Nostrand Math. Studies, no. 2, Van Nostrand, Princeton, N. J., 1965. MR 31 #2504. MR 0178246 (31:2504)
  • [2] J. H. Argyris, I. Fried & D. W. Scharpf, "The tuba family of plate elements for the matrix displacement method," Aeronautical J. Roy. Aeronautical Soc., v. 72, 1968, pp. 618-623.
  • [3] K. Bell, Analysis of Thin Plates in Bending Using Triangular Finite Elements, The Technical University of Norway, Trondheim, 1968.
  • [4] K. Bell, "A refined triangular plate bending finite element," Internat. J. Numer. Methods in Engrg., v. 1, 1969, pp. 101-122.
  • [5] I. S. Berezin & N. P. Židkov, Computing Methods. Vol. I, 2nd ed., Fizmatgiz, Moscow, 1962; English transl., of 1st ed., Pergamon Press, New York, 1965. MR 30 #4372; MR 31 #1756.
  • [6] W. Bosshard, "Ein neues, vollverträgliches endliches Element für Plattenbiegung," Abh. Int. Verein. Brückenbau and Hochbau, Zürich, v. 28, 1968, pp. 27-40.
  • [7] J. H. Bramble & S. R. Hubert, "Estimation of linear functionals on Sobolev spaces with application to Fourier transforms and spline interpolation," Siam. J. Numer. Anal., v. 7, 1970, pp. 113-124. MR 0263214 (41:7819)
  • [8] J. CÉA, "Approximation variationnelle des problèmes aux limites," Ann. Inst. Fourier (Grenoble), v. 14, 1964, pp. 345-444, MR 30 #5037. MR 0174846 (30:5037)
  • [9] R. Courant, "Variational methods for the solution of problems of equilibrium and vibrations," Bull. Amer. Math. Soc., v. 49, 1943, pp. 1-23. MR 4, 200. MR 0007838 (4:200e)
  • [10] J. J. Goël, List of Basic Functions for Numerical Utilisation of Ritz's Method. Application to the Problem of the Plate, École Polytechnique Féderale, Lausanne, 1969.
  • [11] J. Kadlec, "The regularity of the solution of the Poisson problem in a domain whose boundary is similar to that of a convex domain, Czechoslovak Math. J., v. 14(89), 1964, pp. 386-393. (Russian) MR 30 #329. MR 0170088 (30:329)
  • [12] J. Kratochvíl, A. Ženíšek & M. Zlámal, "A simple algorithm for the stiffness matrix of triangular plate bending finite elements," Numer. Methods in Engineering. (To appear.)
  • [13] J. L. Lions & E. Magenes, Problèmes aux Limites non Homogènes et Applications. Vol. 1, Travaux Recherches Math., no. 17, Dunod, Paris, 1968. MR 0247243 (40:512)
  • [14] J. Nitsche, "Lineare Spline-Funktionen und die Methode von Ritz für elliptische Randwertprobleme." (To appear.) MR 0255043 (40:8250)
  • [15] M. J. Turner, R. W. Clough, H. C. Martin & L. J. Topp, "Stiffness and deflection analysis of complex structures," J. Aeronautical Sci., v. 23, 1956, pp. 805-823.
  • [16] M. Visser, The Finite Element Method in Deformation and Heat Conduction Problems, Delft, 1968.
  • [17] A. Ženíšek, "Interpolation polynomials on the triangle," Numer. Math., v. 15, 1970, pp. 283-296. MR 0275014 (43:772)
  • [18] O. C. Zienkiewicz, The Finite Element Method in Structural and Continuum Mechanics, McGraw-Hill, New York, 1967.
  • [19] M. Zlámal, "On the finite element method," Numer. Math., v. 12, 1968, pp. 394- 409. MR 39 #5074. MR 0243753 (39:5074)
  • [20] M. Zlámal, "A finite element procedure of the second order of accuracy," Numer. Math., v. 16, 1970, pp. 394-402.
  • [21] A. C. Felippa, Refined Finite Element Analysis of Linear and Nonlinear TwoDimensional Structures, SESM Report No. 66-22, University of California, Berkeley, Calif., 1967.
  • [22] E. Anderheggen, Programme zur Methode der finiten Elemente, Institut für Baustatik, Eidgenössische Technische Hochschule, Zürich, 1969.
  • [23] G. R. Cowper, E. Kosko, G. M. Lindberg & M. D. Olson, "Formulation of a new triangular plate bending element," C.A.S.I. Trans., v. 1, 1968, pp. 86-90.
  • [24] G. R. Cowper, E. Kosko, G. M. Lindberg & M. D. Olson, "Static and dynamic applications of a high-precision triangular plate bending element," AIAA J., v. 7, 1969, pp. 1957-1965.

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 65.66

Retrieve articles in all journals with MSC: 65.66


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1970-0282540-0
Keywords: Finite element method, Ritz method, Galerkin method, piecewise polynomial subspaces, approximation of solution, elliptic boundary problems
Article copyright: © Copyright 1970 American Mathematical Society

American Mathematical Society