Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 

 

Reviews and Descriptions of Tables and Books


Journal: Math. Comp. 24 (1970), 985-998
DOI: https://doi.org/10.1090/S0025-5718-70-99846-7
Full-text PDF Free Access

References | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] A. Erdélyi et al., Higher Transcendental Functions, Vols. 1 and 2, McGraw-Hill, New York, 1953. (See MTAC, v. 11, 1957, pp. 114-116.)
  • [2] Francesco G. Tricomi, Funzioni ipergeometriche confluenti, Edizioni Cremonese, Roma, 1954 (Italian). MR 0076936
  • [3] L. J. Slater, Confluent hypergeometric functions, Cambridge University Press, New York, 1960. MR 0107026
  • [4] Lucy Joan Slater, Generalized hypergeometric functions, Cambridge University Press, Cambridge, 1966. MR 0201688
  • [5] A. W. Babister, Transcendental functions satisfying nonhomogeneous linear differential equations, The Macmillan Co., New York; Collier-Macmillan, Ltd., London, 1967. MR 0206339
  • [6] Y. L. Luke, The Special Functions and Their Approximations, Vols. 1 and 2, Academic Press, New York, 1969.
  • [1] Henry E. Fettis e& James C. Caslin, Tables of Toroidal Harmonics, I: Orders 0-5, All Significant Degrees, Report ARL 69-0025, Aerospace Research Laboratories, Office of Aerospace Research, United States Air Force, Wright-Patterson Air Force Base, Ohio, Februarv 1969. (See Math Comp., v. 24, 1970, p. 489, RMT 36.)
  • [1] I. Ye. Kireyeva and K. A. Karpov, Tables of Weber functions. Vol. I, Translated by Prasenjit Basu, Pergamon Press, New York-Oxford-London-Paris, 1961. MR 0137318
  • [2] K. A. Karpov & E. A. Chistova, Tablitsy Funktsiï Vebera, v. II, Computing Center, Acad. Sci. USSR, Moscow, 1964.
  • [1] National Physical Laboratory, Tables of Weber Parabolic Cylinder Functions, Computed by Scientific Computing Service Limited, Mathematical Introduction by J. C. P. Miller, Editor. Her Majesty's Stationery Office, London, 1955. (See MTAC, v. 10, 1956, pp. 245-246, RMT 101.)
  • [1] A. R. Curtis, Coulomb wave functions, Prepared under the direction of The Coulomb Wave Functions Panel of the Mathematical Tables Committee. Royal Society Mathematical Tables, Vol. 11, Published for the Royal Society at the Cambridge University Press, New York, 1964. MR 0167643
  • [2] Tables of Coulomb wave functions. Vol. I, National Bureau of Standards Applied Mathematics Series, No. 17, U. S. Government Printing Office, Washington, D. C., 1952. MR 0048146
  • [1] Terence Butler and Karl Pohlhausen, Tables of definite integrals involving Bessel functions of the first kind, WADC Tech. Rep. 54-420, Aeronautical Research Laboratory, Wright Air Development Center, Wright-Patterson Air Force Base, Ohio, 1954. MR 0068898
  • [1] National Bureau of Standards, Tables of Normal Probability Functions, Applied Mathematics Series, v. 23, U. S. Government Printing Office, Washington. D. C., 1953.
  • [2] K. Pearson, editor, Tables for Statisticians and Biometricians. Part I. third edition. Biometric Laboratory, University College, London, 1930, pp. 22-23 (Table 9).
  • [1] C. J. Bouwkamp, "On the dissection of rectangles into squares," Proc. Acad. Sci. Amst., v. 49, 1946, pp. 1176-1188; v. 50, 1947, pp. 58-78, 1296-1299. (Same as Nederl. Akad. Wetensch. Indag. Math., v. 8, 1946, pp. 724-736; v. 9, 1947, pp. 43-63, 622-625.)
  • [2] C. J. Bouwkamp, A. J. W. Duijvestijn, and P. Medema, Tables relating to simple squared rectangles of orders nine through fifteen, Department of Mathematics and Mechanics, Technische Hogeschool, Eindhoven, 1960. MR 0124241
  • [3] Adrianus Johannes Wilhelmus Duijvestijn, Electronic computation of squared rectangles, Thesis, Technische Wetenschap aan de Technische Hogeschool te Eindhoven, Eindhoven, 1962. MR 0144492
  • [4] C. J. Bouwkamp, A. J. W. Duijvestijn & J. Haubrich, Catalogue of Simple Perfect Squared Rectangles of Orders 9 through 18, ms. of 12 volumes, 3090 pp., containing 154490 squared rectangles, Philips Research Laboratories, Eindhoven. Netherlands, 1964.
  • [5] Branko Grünbaum, Convex polytopes, With the cooperation of Victor Klee, M. A. Perles and G. C. Shephard. Pure and Applied Mathematics, Vol. 16, Interscience Publishers John Wiley & Sons, Inc., New York, 1967. MR 0226496
  • [6] P. J. Federico, Enumeration of polyhedra: The number of 9-hedra, J. Combinatorial Theory 7 (1969), 155–161. MR 0243424


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-70-99846-7
Article copyright: © Copyright 1970 American Mathematical Society