Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

On Hadamard matrices constructible by circulant submatrices


Author: C. H. Yang
Journal: Math. Comp. 25 (1971), 181-186
MSC: Primary 05.25
DOI: https://doi.org/10.1090/S0025-5718-1971-0288037-7
Corrigendum: Math. Comp. 28 (1974), 1183-1184.
Corrigendum: Math. Comp. 28 (1974), 1183-1184.
MathSciNet review: 0288037
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ {V_{2n}}$ be an H-matrix of order 2n constructible by using circulant $ n \times n$ submatrices. A recursive method has been found to construct $ {V_{4n}}$ by using circulant $ 2n \times 2n$ submatrices which are derived from $ n \times n$ submatrices of a given $ {V_{2n}}$. A similar method can be applied to a given $ {W_{4n}}$, an H-matrix of Williamson type with odd n, to construct $ {W_{8n}}$. All $ {V_{2n}}$ constructible by the standard type, for $ 1 \leqq n \leqq 16$, and some $ {V_{2n}}$, for $ n \geqq 20$, are listed and classified by this method.


References [Enhancements On Off] (What's this?)

  • [1] L. D. Baumert & Marshall Hall, Jr., "Hadamard matrices of the Williamson type," Math. Comp., v. 19, 1965, pp. 442-447. MR 31 #3344. MR 0179093 (31:3344)
  • [2] Marshall Hall, Jr., Combinatorial Theory, Blaisdell, Waltham, Mass., 1967. MR 37 #80. MR 0224481 (37:80)
  • [3] H. J. Ryser, Combinatorial Mathematics, Carus Math. Monographs, no. 14, Math. Assoc. Amer., distributed by Wiley, New York, 1963. MR 27 #51. MR 0150048 (27:51)
  • [4] J. Williamson, "Hadamard's determinant theorem and the sum of four squares," Duke Math. J., v. 11, 1944, pp. 65-81. MR 5, 169. MR 0009590 (5:169g)
  • [5] C. H. Yang, "On designs of maximal $ ( + 1, - 1)$-matrices of order $ n \equiv 2 \pmod 4$," Math. Comp., v. 22, 1968, pp. 174-180. MR 37 #1069. MR 0225476 (37:1069)
  • [6] C. H. Yang, "On designs of maximal $ ( + 1, - 1)$-matrices of order $ n \equiv 2 \pmod 4$. II," Math. Comp., v. 23, 1969, pp. 201-205. MR 39 #1105. MR 0239748 (39:1105)
  • [7] L. D. Baumert, "Hadamard matrices of orders 116 and 232," Bull. Amer. Math. Soc., v. 72, 1966, p. 237. MR 32 #4026. MR 0186567 (32:4026)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 05.25

Retrieve articles in all journals with MSC: 05.25


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1971-0288037-7
Keywords: Construction of Hadamard matrices, circulant matrices, standard type H-matrices, Williamson type H-matrices, recursive method for H-matrices, table for some H-matrices
Article copyright: © Copyright 1971 American Mathematical Society

American Mathematical Society