On Hadamard matrices constructible by circulant submatrices
Author:
C. H. Yang
Journal:
Math. Comp. 25 (1971), 181186
MSC:
Primary 05.25
Corrigendum:
Math. Comp. 28 (1974), 11831184.
Corrigendum:
Math. Comp. 28 (1974), 11831184.
MathSciNet review:
0288037
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: Let be an Hmatrix of order 2n constructible by using circulant submatrices. A recursive method has been found to construct by using circulant submatrices which are derived from submatrices of a given . A similar method can be applied to a given , an Hmatrix of Williamson type with odd n, to construct . All constructible by the standard type, for , and some , for , are listed and classified by this method.
 [1]
L.
D. Baumert and Marshall
Hall Jr., Hadamard matrices of the Williamson
type, Math. Comp. 19 (1965), 442–447. MR 0179093
(31 #3344), http://dx.doi.org/10.1090/S00255718196501790932
 [2]
Marshall
Hall Jr., Combinatorial theory, Blaisdell Publishing Co. Ginn
and Co., Waltham, Mass.Toronto, Ont.London, 1967. MR 0224481
(37 #80)
 [3]
Herbert
John Ryser, Combinatorial mathematics, The Carus Mathematical
Monographs, No. 14, Published by The Mathematical Association of America;
distributed by John Wiley and Sons, Inc., New York, 1963. MR 0150048
(27 #51)
 [4]
John
Williamson, Hadamard’s determinant theorem and the sum of
four squares, Duke Math. J. 11 (1944), 65–81.
MR
0009590 (5,169g)
 [5]
C.
H. Yang, On designs of maximal (+1,1)matrices
of order 𝑛≡2(𝑚𝑜𝑑\4), Math. Comp. 22 (1968), 174–180. MR 0225476
(37 #1069), http://dx.doi.org/10.1090/S00255718196802254764
 [6]
C.
H. Yang, On designs of maximal (+1,1)matrices
of order 𝑛≡2(𝑚𝑜𝑑\4). II, Math. Comp. 23 (1969), 201–205. MR 0239748
(39 #1105), http://dx.doi.org/10.1090/S00255718196902397481
 [7]
L.
D. Baumert, Hadamard matrices of orders 116 and
232, Bull. Amer. Math. Soc. 72 (1966), 237. MR 0186567
(32 #4026), http://dx.doi.org/10.1090/S000299041966114817
 [1]
 L. D. Baumert & Marshall Hall, Jr., "Hadamard matrices of the Williamson type," Math. Comp., v. 19, 1965, pp. 442447. MR 31 #3344. MR 0179093 (31:3344)
 [2]
 Marshall Hall, Jr., Combinatorial Theory, Blaisdell, Waltham, Mass., 1967. MR 37 #80. MR 0224481 (37:80)
 [3]
 H. J. Ryser, Combinatorial Mathematics, Carus Math. Monographs, no. 14, Math. Assoc. Amer., distributed by Wiley, New York, 1963. MR 27 #51. MR 0150048 (27:51)
 [4]
 J. Williamson, "Hadamard's determinant theorem and the sum of four squares," Duke Math. J., v. 11, 1944, pp. 6581. MR 5, 169. MR 0009590 (5:169g)
 [5]
 C. H. Yang, "On designs of maximal matrices of order ," Math. Comp., v. 22, 1968, pp. 174180. MR 37 #1069. MR 0225476 (37:1069)
 [6]
 C. H. Yang, "On designs of maximal matrices of order . II," Math. Comp., v. 23, 1969, pp. 201205. MR 39 #1105. MR 0239748 (39:1105)
 [7]
 L. D. Baumert, "Hadamard matrices of orders 116 and 232," Bull. Amer. Math. Soc., v. 72, 1966, p. 237. MR 32 #4026. MR 0186567 (32:4026)
Similar Articles
Retrieve articles in Mathematics of Computation
with MSC:
05.25
Retrieve articles in all journals
with MSC:
05.25
Additional Information
DOI:
http://dx.doi.org/10.1090/S00255718197102880377
PII:
S 00255718(1971)02880377
Keywords:
Construction of Hadamard matrices,
circulant matrices,
standard type Hmatrices,
Williamson type Hmatrices,
recursive method for Hmatrices,
table for some Hmatrices
Article copyright:
© Copyright 1971
American Mathematical Society
