Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

   
Remote Access
Green Open Access
Mathematics of Computation
Mathematics of Computation
ISSN 1088-6842(online) ISSN 0025-5718(print)

 

Least squares methods for $ 2m$th order elliptic boundary-value problems


Authors: J. H. Bramble and A. H. Schatz
Journal: Math. Comp. 25 (1971), 1-32
MSC: Primary 65N99
MathSciNet review: 0295591
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we consider a general class of boundary-value problems for 2mth order elliptic equations including nonhomogeneous essential boundary conditions and nonselfadjoint problems. Approximation methods involving least squares approximation of the data are presented and corresponding error estimates are proved. These methods can be considered in the category of Rayleigh-Ritz-Galerkin methods and have the special feature that the trial functions need not satisfy the boundary conditions. A special case of the trial functions which is studied are spline functions defined on a uniform mesh of width h (or more generally piecewise polynomial functions). For a given "well set" boundary-value problem for a 2mth order operator the theory presented will provide a method with any prescribed order of accuracy r which is optimal in the sense that the best approximation in the underlying subspace is of order of accuracy r.


References [Enhancements On Off] (What's this?)

  • [1] Shmuel Agmon, Lectures on elliptic boundary value problems, Prepared for publication by B. Frank Jones, Jr. with the assistance of George W. Batten, Jr. Van Nostrand Mathematical Studies, No. 2, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London, 1965. MR 0178246 (31 #2504)
  • [2] Jean-Pierre Aubin, Behavior of the error of the approximate solutions of boundary value problems for linear elliptic operators by Gelerkin’s and finite difference methods, Ann. Scuola Norm. Sup. Pisa (3) 21 (1967), 599–637. MR 0233068 (38 #1391)
  • [3] Jean-Pierre Aubin, Interpolation et approximation optimales et “spline functions”, J. Math. Anal. Appl. 24 (1968), 1–24 (French). MR 0231096 (37 #6651)
  • [4] J. P. Aubin, "Approximation des problèms aux limites non homogènes et régularite de la convergence," Calcolo, v. 6, 1969, pp. 117-139.
  • [5] J. P. Aubin, Variational Methods for Non-Homogeneous Boundary Value Problems, SYNSPADE, 1970 (B. E. Hubbard, editor). (To appear.)
  • [6] I. Babuška, Numerical Solution of Boundary Value Problems by the Perturbed Variational Principle, University of Maryland, Technical Note BN-624, College Park, Md., 1969.
  • [7] I. Babuška, Approximation by Hill Functions, University of Maryland, Technical Note BN-648, College Park, Md.
  • [8] I. Babuška, The Finite Element Method for Elliptic Equations With Discontinuous Coefficients, University of Maryland, Technical Note BN-631, College Park, Md.
  • [9] I. Babuška, Error-Bounds for Finite Element Method, University of Maryland, Technical Note BN-630, College Park, Md.
  • [10] I. Babuška, Computation of Derivatives in the Finite Element Method, University of Maryland, Technical Note BN-650, College Park, Md.
  • [11] I. Babuška, Finite Element Method for Domains With Corners, University of Maryland, Technical Note BN-636, College Park, Md.
  • [12] Ju. M. Berezanskii, Expansion in Eigenfunctions of Self Adjoint Operators, Naukova Dumka, Kiev, 1965; English transl., Transl. Math. Monographs, vol. 17, Amer. Math. Soc., Providence, R.I., 1968. MR 36 #5768; 5769.
  • [13] J. H. Bramble and S. R. Hilbert, Bounds for a class of linear functionals with applications to Hermite interpolation, Numer. Math. 16 (1970/1971), 362–369. MR 0290524 (44 #7704)
  • [14] James H. Bramble and Alfred H. Schatz, Rayleigh-Ritz-Galerkin methods for Dirichlet’s problem using subspaces without boundary conditions, Comm. Pure Appl. Math. 23 (1970), 653–675. MR 0267788 (42 #2690)
  • [15] J. H. Bramble and A. H. Schatz, On the numerical solution of elliptic boundary value problems by least squares approximation of the data, Numerical Solution of Partial Differential Equations, II (SYNSPADE 1970) (Proc. Sympos., Univ. of Maryland, College Park, Md., 1970) Academic Press, New York, 1971, pp. 107–131. MR 0273837 (42 #8713)
  • [16] James H. Bramble and Miloš Zlámal, Triangular elements in the finite element method, Math. Comp. 24 (1970), 809–820. MR 0282540 (43 #8250), http://dx.doi.org/10.1090/S0025-5718-1970-0282540-0
  • [17] Paul L. Butzer and Hubert Berens, Semi-groups of operators and approximation, Die Grundlehren der mathematischen Wissenschaften, Band 145, Springer-Verlag New York Inc., New York, 1967. MR 0230022 (37 #5588)
  • [18] F. Di Guglielmo, Construction d’approximations des espaces de Sobolev sur des réseaux en simplexes, Calcolo 6 (1969), 279–331. MR 0433113 (55 #6092)
  • [19] George Fix and Gilbert Strang, Fourier analysis of the finite element method in Ritz-Galerkin theory., Studies in Appl. Math. 48 (1969), 265–273. MR 0258297 (41 #2944)
  • [20] K. O. Friedrichs and H. B. Keller, A finite difference scheme for generalized Neumann problems, Numerical Solution of Partial Differential Equations (Proc. Sympos. Univ. Maryland, 1965) Academic Press, New York, 1966, pp. 1–19. MR 0203956 (34 #3803)
  • [21] Pierre Grisvard, Commutativité de deux foncteurs d’interpolation et applications, J. Math. Pures Appl. (9) 45 (1966), 143–206 (French). MR 0221309 (36 #4361)
  • [22] S. Hilbert, Numerical Methods for Elliptic Boundary Problems, Ph.D. Thesis, University of Maryland, College Park, Md., 1969.
  • [23] J.-L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications. Vol. 1, Travaux et Recherches Mathématiques, No. 17, Dunod, Paris, 1968 (French). MR 0247243 (40 #512)
  • [24] Enrico Magenes, Spazi d’interpolazione ed equazioni a derivate parziali, Atti del Settimo Congresso dell’ Unione Matematica Italiana (Genova, 1963), Edizioni Cremonese, Rome, 1965, pp. 134–197 (Italian). MR 0215082 (35 #5925)
  • [25] J. Nitsche, Lineare Spline-Funktionen und die Methoden von Ritz für elliptische Randwertprobleme, Arch. Rational Mech. Anal. 36 (1970), 348–355 (German). MR 0255043 (40 #8250)
  • [26] J. Nitsche, Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind, Abh. Math. Sem. Univ. Hamburg 36 (1971), 9–15 (German). Collection of articles dedicated to Lothar Collatz on his sixtieth birthday. MR 0341903 (49 #6649)
  • [27] Ja. A. Roĭtberg and Z. G. Šeftel′, A homeomorphism theorem for elliptic systems, and its applications., Mat. Sb. (N.S.) 78 (120) (1969), 446–472 (Russian). MR 0247270 (40 #539)
  • [28] Martin Schechter, On 𝐿^{𝑝} estimates and regularity. II, Math. Scand. 13 (1963), 47–69. MR 0188616 (32 #6052)
  • [29] Martin H. Schultz, Approximation theory of multivariate spline functions in Sobolev spaces, SIAM J. Numer. Anal. 6 (1969), 570–582. MR 0263218 (41 #7823)
  • [30] Martin H. Schultz, Rayleigh-Ritz-Galerkin methods for multidimensional problems, SIAM J. Numer. Anal. 6 (1969), 523–538. MR 0263254 (41 #7859)
  • [31] Gilbert Strang, The finite element method and approximation theory, Numerical Solution of Partial Differential Equations, II (SYNSPADE 1970) (Proc. Sympos., Univ. of Maryland, College Park, Md., 1970) Academic Press, New York, 1971, pp. 547–583. MR 0287723 (44 #4926)
  • [32] Richard S. Varga, Hermite interpolation-type Ritz methods for two-point boundary value problems, Numerical Solution of Partial Differential Equations (Proc. Sympos. Univ. Maryland, 1965) Academic Press, New York, 1966, pp. 365–373. MR 0205475 (34 #5302)
  • [33] Miloš Zlámal, On the finite element method, Numer. Math. 12 (1968), 394–409. MR 0243753 (39 #5074)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 65N99

Retrieve articles in all journals with MSC: 65N99


Additional Information

DOI: http://dx.doi.org/10.1090/S0025-5718-1971-0295591-8
PII: S 0025-5718(1971)0295591-8
Keywords: Rayleigh-Ritz-Galerkin methods, least squares approximation, 2mth order elliptic boundary-value problems, numerical solution of higher order elliptic problems
Article copyright: © Copyright 1971 American Mathematical Society



Comments: Email Webmaster

© Copyright , American Mathematical Society
Contact Us · Sitemap · Privacy Statement

Connect with us Facebook Twitter Google+ LinkedIn Instagram RSS feeds Blogs YouTube Podcasts Wikipedia