Whittaker's cardinal function in retrospect

Authors:
J. McNamee, F. Stenger and E. L. Whitney

Journal:
Math. Comp. **25** (1971), 141-154

MSC:
Primary 41A30; Secondary 65R05

DOI:
https://doi.org/10.1090/S0025-5718-1971-0301428-0

MathSciNet review:
0301428

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: This paper exposes properties of the Whittaker cardinal function and illustrates the use of this function as a mathematical tool. The cardinal function is derived using the Paley-Wiener theorem. The cardinal function and the central-difference expansions are linked through their similarities. A bound is obtained on the difference between the cardinal function and the function which it interpolates. Several cardinal functions of a number of special functions are examined. It is shown how the cardinal function provides a link between Fourier series and Fourier transforms, and how the cardinal function may be used to solve integral equations.

**[1]**E. T. Whittaker, "On the functions which are represented by the expansions of the interpolation theory,"*Proc. Roy. Soc. Edinburgh*, v. 35, 1915, pp. 181-194.**[2]**J. M. Whittaker, "On the cardinal function of interpolation theory,"*Proc. Edinburgh Math. Soc.*, Ser. 1, v. 2, 1927, pp. 41-46.**[3]**J. M. Whittaker,*Interpolatory Function Theory*, Cambridge, London, 1935.**[4]**R. V. L. Hartley, "The transmission of information,"*Bell System Tech. J.*, v. 7, 1928, pp. 535-560.**[5]**H. Nyquist, "Certain topics in telegraph transmission theory,"*Trans. Amer. Inst. Elec. Engrg.*, v. 47, 1928, pp. 617-644.**[6]**C. E. Shannon, "A mathematical theory of communication,"*Bell System Tech. J.*, v. 27, 1948, pp. 379-423, 623-656. MR**10**, 133. MR**0026286 (10:133e)****[7]**I. J. Schoenberg, "Cardinal interpolation and spline functions,"*J. Approximation Theory*, v. 2, 1969, pp. 167-206. MR**0257616 (41:2266)****[8]**A. F. Timan,*Theory of Approximation of Functions of a Real Variable*, Fizmatgiz, Moscow, 1960; English transl., Internat. Series of Monographs in Pure and Appl. Math., vol. 34, Macmillan, New York, 1963. MR**22**#8257; MR**33**#465. MR**0117478 (22:8257)****[9]**N. E. Nörlund,*Vorlesungen über Differenzenrechung*, Springer, Berlin, 1924.**[10]**N. E. Nörlund, "Sur les formules d'interpolation de Stirling et de Newton,"*Ann. Sci. École Norm. Sup.*, v. 39, 1922, pp. 343-403.**[11]**H. O. Pollak, "Energy distribution of band-limited functions whose samples on a half line vanish,"*J. Math. Anal. Appl.*, v. 2, 1961, pp. 299-322. MR**0133208 (24:A3042)****[12]**T. J. Bromwich,*An Introduction to the Theory of Infinite Series*, 2nd ed., Macmillan, London, 1926.**[13]**R. V. Churchill,*Fourier Series and Boundary Value Problems*, McGraw-Hill, New York, 1941. MR**2**, 189. MR**0003251 (2:189d)****[14]**G. K. Warmbrod, "The distributional finite Fourier transform,"*SIAM J. Appl. Math*, v. 17, 1969, pp. 930-956. MR**40**#4760. MR**0251533 (40:4760)****[15]**E. C. Titchmarsh,*The Theory of Fourier Integrals*, Clarendon Press, Oxford, 1954.

Retrieve articles in *Mathematics of Computation*
with MSC:
41A30,
65R05

Retrieve articles in all journals with MSC: 41A30, 65R05

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1971-0301428-0

Keywords:
Cardinal function,
interpolation,
quadrature,
complex

Article copyright:
© Copyright 1971
American Mathematical Society