Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Whittaker's cardinal function in retrospect


Authors: J. McNamee, F. Stenger and E. L. Whitney
Journal: Math. Comp. 25 (1971), 141-154
MSC: Primary 41A30; Secondary 65R05
DOI: https://doi.org/10.1090/S0025-5718-1971-0301428-0
MathSciNet review: 0301428
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: This paper exposes properties of the Whittaker cardinal function and illustrates the use of this function as a mathematical tool. The cardinal function is derived using the Paley-Wiener theorem. The cardinal function and the central-difference expansions are linked through their similarities. A bound is obtained on the difference between the cardinal function and the function which it interpolates. Several cardinal functions of a number of special functions are examined. It is shown how the cardinal function provides a link between Fourier series and Fourier transforms, and how the cardinal function may be used to solve integral equations.


References [Enhancements On Off] (What's this?)

  • [1] E. T. Whittaker, "On the functions which are represented by the expansions of the interpolation theory," Proc. Roy. Soc. Edinburgh, v. 35, 1915, pp. 181-194.
  • [2] J. M. Whittaker, "On the cardinal function of interpolation theory," Proc. Edinburgh Math. Soc., Ser. 1, v. 2, 1927, pp. 41-46.
  • [3] J. M. Whittaker, Interpolatory Function Theory, Cambridge, London, 1935.
  • [4] R. V. L. Hartley, "The transmission of information," Bell System Tech. J., v. 7, 1928, pp. 535-560.
  • [5] H. Nyquist, "Certain topics in telegraph transmission theory," Trans. Amer. Inst. Elec. Engrg., v. 47, 1928, pp. 617-644.
  • [6] C. E. Shannon, "A mathematical theory of communication," Bell System Tech. J., v. 27, 1948, pp. 379-423, 623-656. MR 10, 133. MR 0026286 (10:133e)
  • [7] I. J. Schoenberg, "Cardinal interpolation and spline functions," J. Approximation Theory, v. 2, 1969, pp. 167-206. MR 0257616 (41:2266)
  • [8] A. F. Timan, Theory of Approximation of Functions of a Real Variable, Fizmatgiz, Moscow, 1960; English transl., Internat. Series of Monographs in Pure and Appl. Math., vol. 34, Macmillan, New York, 1963. MR 22 #8257; MR 33 #465. MR 0117478 (22:8257)
  • [9] N. E. Nörlund, Vorlesungen über Differenzenrechung, Springer, Berlin, 1924.
  • [10] N. E. Nörlund, "Sur les formules d'interpolation de Stirling et de Newton," Ann. Sci. École Norm. Sup., v. 39, 1922, pp. 343-403.
  • [11] H. O. Pollak, "Energy distribution of band-limited functions whose samples on a half line vanish," J. Math. Anal. Appl., v. 2, 1961, pp. 299-322. MR 0133208 (24:A3042)
  • [12] T. J. Bromwich, An Introduction to the Theory of Infinite Series, 2nd ed., Macmillan, London, 1926.
  • [13] R. V. Churchill, Fourier Series and Boundary Value Problems, McGraw-Hill, New York, 1941. MR 2, 189. MR 0003251 (2:189d)
  • [14] G. K. Warmbrod, "The distributional finite Fourier transform," SIAM J. Appl. Math, v. 17, 1969, pp. 930-956. MR 40 #4760. MR 0251533 (40:4760)
  • [15] E. C. Titchmarsh, The Theory of Fourier Integrals, Clarendon Press, Oxford, 1954.

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 41A30, 65R05

Retrieve articles in all journals with MSC: 41A30, 65R05


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1971-0301428-0
Keywords: Cardinal function, interpolation, quadrature, complex
Article copyright: © Copyright 1971 American Mathematical Society

American Mathematical Society