Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)



Calculation of the gamma function by Stirling's formula

Author: Robert Spira
Journal: Math. Comp. 25 (1971), 317-322
MSC: Primary 65D20
MathSciNet review: 0295539
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, we derive a simple error estimate for the Stirling formula and also give numerical coefficients.

References [Enhancements On Off] (What's this?)

  • [1] N. G. de Bruijn, Asymptotic Methods in Analysis, Bibliotheca Math., vol. 4, North-Holland, Amsterdam; Noordhoff, Groningen; Interscience, New York, 1958. MR 20 #6003. MR 0099564 (20:6003)
  • [2] J. W. Wrench, Jr., "Concerning two series for the gamma function," Math. Comp., v. 22, 1968, pp. 617-626. MR 38 #5371. MR 0237078 (38:5371)
  • [3] R. Spira, Table of the Riemann Zeta Function, UMT files, reviewed in Math. Comp., v. 18, 1964, pp. 519-521.
  • [4] Table of the Gamma Function for Complex Arguments, Nat. Bur. Standards, Appl. Math. Series, vol. 34, 1954.
  • [5] E. T. Whittaker & G. N. Watson, A Course of Modern Analysis, 4th ed., Cambridge Univ. Press, New York, 1962. MR 31 #2375. MR 1424469 (97k:01072)
  • [6] N. Nielsen, Die Gammafunction. Band I. Handbuch der Theorie der Gammafunktion. Band II. Theorie des Integrallogarithmus und verwandter Transzendenten, Chelsea, New York, 1965. MR 32 #2622.
  • [7] R. Spira, Fortran Multiple Precision. Parts I, II, Mathematics Department, Michigan State University, East Lansing, Michigan, 1970.

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 65D20

Retrieve articles in all journals with MSC: 65D20

Additional Information

Keywords: Asymptotic series, gamma function
Article copyright: © Copyright 1971 American Mathematical Society

American Mathematical Society