An example of ill-conditioning in the numerical solution of singular perturbation problems

Author:
Fred W. Dorr

Journal:
Math. Comp. **25** (1971), 271-283

MSC:
Primary 65L05

DOI:
https://doi.org/10.1090/S0025-5718-1971-0297142-0

MathSciNet review:
0297142

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The use of finite-difference methods is considered for solving a singular perturbation problem for a linear ordinary differential equation with an interior turning point. Computational results demonstrate that such problems can lead to very ill-conditioned matrix equations.

**[1]**I. Babuška,*Numerical Stability in the Solution of the Tri-Diagonal Matrices*, Report BN-609, The Institute for Fluid Dynamics and Applied Mathematics, University of Maryland, College Park, Md., 1969.**[2]**I. Babuška,*Numerical Stability in Problems in Linear Algebra*, Report BN-663, The Institute for Fluid Dynamics and Applied Mathematics, University of Maryland, College Park, Md., 1970.**[3]**F. W. Dorr,*The Asymptotic Behavior and Numerical Solution of Singular Perturbation Problems with Turning Points*, Ph.D. Thesis, University of Wisconsin, Madison, Wis., 1969.**[4]**Fred Dorr,*The numerical solution of singular perturbations of boundary value problems*, SIAM J. Numer. Anal.**7**(1970), 281–313. MR**0267781**, https://doi.org/10.1137/0707021**[5]**F. W. Dorr and S. V. Parter,*Singular perturbations of nonlinear boundary value problems with turning points*, J. Math. Anal. Appl.**29**(1970), 273–293. MR**0262622**, https://doi.org/10.1016/0022-247X(70)90079-X**[6]**F. W. Dorr & S. V. Parter,*Extensions of Some Results on Singular Perturbation Problems With Turning Points*, Report LA-4290-MS, Los Alamos Scientific Laboratory, Los Alamos, N. M., 1969.**[7]**G. H. Golub,*Matrix Decompositions and Statistical Calculations*, Report CS-124, Computer Science Department, Stanford University, Stanford, Calif., 1969.**[8]**D. Greenspan,*Numerical Studies of Two Dimensional, Steady State Navier-Stokes Equations for Arbitrary Reynolds Number*, Report 9, Computer Sciences Department, University of Wisconsin, Madison, Wis., 1967.**[9]**W. D. Murphy,*Numerical analysis of boundary-layer problems in ordinary differential equations*, Math. Comp.**21**(1967), 583–596. MR**0225496**, https://doi.org/10.1090/S0025-5718-1967-0225496-9**[10]**B. Noble,*Personal Communication*, University of Wisconsin, Madison, Wis., Feb. 19, 1970.**[11]**Carl E. Pearson,*On a differential equation of boundary layer type*, J. Math. and Phys.**47**(1968), 134–154. MR**0228189****[12]**Carl E. Pearson,*On non-linear ordinary differential equations of boundary layer type.*, J. Math. and Phys.**47**(1968), 351–358. MR**0237107****[13]**Harvey S. Price, Richard S. Varga, and Joseph E. Warren,*Application of oscillation matrices to diffusion-convection equations*, J. Math. and Phys.**45**(1966), 301–311. MR**0207230****[14]**Harvey S. Price and Richard S. Varga,*Error bounds for semidiscrete Galerkin approximations of parabolic problems with applications to petroleum reservoir mechanics*, Numerical Solution of Field Problems in Continuum Physics (Proc. Sympos. Appl. Math., Durham, N.C., 1968) Amer. Math. Soc., Providence, R.I., 1970, pp. 74–94. MR**0266452****[15]**Richard S. Varga,*Matrix iterative analysis*, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1962. MR**0158502****[16]**J. H. Wilkinson,*The algebraic eigenvalue problem*, Clarendon Press, Oxford, 1965. MR**0184422**

Retrieve articles in *Mathematics of Computation*
with MSC:
65L05

Retrieve articles in all journals with MSC: 65L05

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1971-0297142-0

Keywords:
Ordinary differential equations,
boundary-value problems,
singular perturbation problems,
finite-difference equations,
matrix equations,
ill-conditioning

Article copyright:
© Copyright 1971
American Mathematical Society