Rational approximations to

Authors:
K. Y. Choong, D. E. Daykin and C. R. Rathbone

Journal:
Math. Comp. **25** (1971), 387-392

MSC:
Primary 10F20; Secondary 10-04

DOI:
https://doi.org/10.1090/S0025-5718-1971-0300981-0

MathSciNet review:
0300981

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Using an IBM 1130 computer, we have generated the first 20,000 partial quotients in the ordinary continued-fraction representation of .

**[1]**D. Shanks & J. W. Wrench, Jr., "Calculation of to 100,000 decimals,"*Math. Comp.*, v. 16, 1962, pp. 76-99. MR**24**#B2090. MR**0136051 (24:B2090)****[2]**J. W. S. Cassels,*An Introduction to Diophantine Approximation*, Cambridge Tracts in Math. and Math. Phys., no. 45, Cambridge Univ. Press, New York, 1957. MR**19**, 396. MR**0087708 (19:396h)****[3]**D. H. Lehmer, "Euclid's algorithm for large numbers,"*Amer. Math. Monthly*, v. 45, 1938, pp. 226-233.**[4]**A. Ja. Hinčin,*Continued Fractions*, Fizmatgiz, Moscow, 1961; English transl., Noordhoff, Groningen, 1963; Univ. of Chicago Press, Chicago, Ill., 1964. MR**28**#5037; 5038. MR**0161834 (28:5038)****[5]**D. E. Daykin, "An addition algorithm for greatest common divisor,"*Fibonacci Quart.*, v. 8, 1970, pp. 347-349. MR**0269576 (42:4471)**

Retrieve articles in *Mathematics of Computation*
with MSC:
10F20,
10-04

Retrieve articles in all journals with MSC: 10F20, 10-04

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1971-0300981-0

Keywords:
Continued fraction,
best rational approximation,
algorithm

Article copyright:
© Copyright 1971
American Mathematical Society