Rational approximations to

Authors:
K. Y. Choong, D. E. Daykin and C. R. Rathbone

Journal:
Math. Comp. **25** (1971), 387-392

MSC:
Primary 10F20; Secondary 10-04

MathSciNet review:
0300981

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Using an IBM 1130 computer, we have generated the first 20,000 partial quotients in the ordinary continued-fraction representation of .

**[1]**Daniel Shanks and John W. Wrench Jr.,*Calculation of 𝜋 to 100,000 decimals*, Math. Comp.**16**(1962), 76–99. MR**0136051**, 10.1090/S0025-5718-1962-0136051-9**[2]**J. W. S. Cassels,*An introduction to Diophantine approximation*, Cambridge Tracts in Mathematics and Mathematical Physics, No. 45, Cambridge University Press, New York, 1957. MR**0087708****[3]**D. H. Lehmer, "Euclid's algorithm for large numbers,"*Amer. Math. Monthly*, v. 45, 1938, pp. 226-233.**[4]**A. Ya. Khintchine,*Continued fractions*, Translated by Peter Wynn, P. Noordhoff, Ltd., Groningen, 1963. MR**0161834****[5]**D. E. Daykin,*An addition algorithm for greatest common divisor*, Fibonacci Quart.**8**(1970), no. 4, 347–349. MR**0269576**

Retrieve articles in *Mathematics of Computation*
with MSC:
10F20,
10-04

Retrieve articles in all journals with MSC: 10F20, 10-04

Additional Information

DOI:
http://dx.doi.org/10.1090/S0025-5718-1971-0300981-0

Keywords:
Continued fraction,
best rational approximation,
algorithm

Article copyright:
© Copyright 1971
American Mathematical Society