Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

A fourth-order finite-difference approximation for the fixed membrane eigenproblem


Author: J. R. Kuttler
Journal: Math. Comp. 25 (1971), 237-256
MSC: Primary 65N25
DOI: https://doi.org/10.1090/S0025-5718-1971-0301955-6
MathSciNet review: 0301955
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The fixed membrane problem $ \Delta u + \lambda u = 0$ in $ \Omega ,u = 0$ on $ \partial \Omega $, for a bounded region $ \Omega $ of the plane, is approximated by a finite-difference scheme whose matrix is monotone. By an extension of previous methods for schemes with matrices of positive type, $ O({h^4})$ convergence is shown for the approximating eigenvalues and eigenfunctions, where h is the mesh width. An application to an approximation of the forced vibration problem $ \Delta u + qu = f$ in $ \Omega ,u = 0$ in $ \partial \Omega $, is also given.


References [Enhancements On Off] (What's this?)

  • [1] J. H. Bramble, "Error estimates for difference methods in forced vibration problems," SIAM J. Numer. Anal., v. 3, 1966, no. 1, pp. 1-12. MR 34 #969. MR 0201084 (34:969)
  • [2] J. H. Bramble & B. E. Hubbard, "New monotone type approximations for elliptic problems," Math. Comp., v. 18, 1964, pp. 349-367. MR 29 #2982. MR 0165702 (29:2982)
  • [3] J. H. Bramble & V. C. Thomée, "Point-wise bounds for discrete Green's functions," SIAM I. Numer. Anal., v. 6, 1969, pp. 583-590. MR 0263265 (41:7870)
  • [4] R. Courant & D. Hilbert, Methoden der Mathematischen Physik. Vol. I, Springer, Berlin, 1931; English transl., Interscience, New York, 1953. MR 16, 426.
  • [5] B. E. Hubbard, "Bounds for eigenvalues of the free and fixed membrane by finite difference methods," Pacific J. Math., v. 11, 1961, pp. 559-590. MR 25 #4633. MR 0141223 (25:4633)
  • [6] J. R. Kuttler, "Finite difference approximations for eigenvalues of uniformly elliptic operators," SIAM J. Numer. Anal., v. 7, 1970. MR 0273841 (42:8717)
  • [7] M. Marcus & H. Minc, A Survey of Matrix Theory and Matrix Inequalities, Allyn and Bacon, Boston, Mass., 1964. MR 29 #112. MR 0162808 (29:112)
  • [8] H. S. Price, "Monotone and oscillation matrices applied to finite difference approximations," Math. Comp., v. 22, 1968, pp. 489-516. MR 38 #875. MR 0232550 (38:875)
  • [9] H. F. Weinberger, "Lower bounds for higher eigenvalues by finite difference methods," Pacific J. Math., v. 8, 1958, pp. 339-368; erratum, 941. MR 21 #6097. MR 0107372 (21:6097)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 65N25

Retrieve articles in all journals with MSC: 65N25


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1971-0301955-6
Keywords: Finite-differences, membrane, fixed membrane, eigenvalues, elliptic partial differential equations, monotone matrices, forced vibration problem, discrete Green's function
Article copyright: © Copyright 1971 American Mathematical Society

American Mathematical Society