A Fourth-Order Finite-Difference Approximation for the Fixed Membrane eigenproblem*

By J. R. Kuttler

Abstract. The fixed membrane problem \(\Delta u + \lambda u = 0 \) in \(\Omega \), \(u = 0 \) on \(\partial \Omega \), for a bounded region \(\Omega \) of the plane, is approximated by a finite-difference scheme whose matrix is monotone. By an extension of previous methods for schemes with matrices of positive type, \(O(h^4) \) convergence is shown for the approximating eigenvalues and eigenfunctions, where \(h \) is the mesh width. An application to an approximation of the forced vibration problem \(\Delta u + qu = f \) in \(\Omega \), \(u = 0 \) in \(\partial \Omega \), is also given.

1. Introduction. Let \(\Omega \) be a bounded region of the plane with smooth boundary \(\partial \Omega \). We consider the fixed membrane problem

\[
\Delta u(x) + \lambda u(x) = 0, \quad x \in \Omega, \quad u(x) = 0, \quad x \in \partial \Omega,
\]

where \(\Delta \) is the Laplacian. In [6], this problem was approximated by difference schemes which were of positive type in the interior of the region. Here, we consider a difference scheme for (1.1) which is only monotone. However, by appropriate modifications of the techniques of [6], we can prove that this scheme yields \(O(h^4) \) approximations to the eigenvalues and eigenvectors of (1.1). The principal result is Theorem 8.1. An application to a forced vibration problem is also given in Section 9.

2. The Difference Scheme. Let \(h > 0 \) be given and define the mesh \(S_h \) by

\[
\{(ih, jh) : i, j \text{ are integers}\}.
\]

Points \(x, y \in S_h \) will be called nearest neighbors if \(|x - y| = h \), where we write

\[
|x - y| = ((x_1 - y_1)^2 + (x_2 - y_2)^2)^{1/2}.
\]

Let \(\Omega_h^{(3)} \) be the set of points in \(S_h \cap \Omega \) having at least one nearest neighbor not in \(\Omega \). One such point might be \(x = (x_1, x_2) \) with \((x_1 - \alpha h, x_2), (x_1, x_2 - \beta h) \in \partial \Omega \) for \(0 < \alpha, \beta \leq 2 \). If \((x_1 + h, x_2), (x_1 + 2h, x_2), (x_1, x_2 + h), (x_1, x_2 + 2h) \in \Omega \), we define...
238

\[h^2 l_h(x, y) = \frac{3 - \alpha}{\alpha} + \frac{3 - \beta}{\beta}, \quad y = x, \]

\[= -\frac{2(2 - \alpha)}{1 + \alpha}, \quad y = (x_1 + h, x_2), \]

\[= -\frac{2(2 - \beta)}{1 + \beta}, \quad y = (x_1, x_2 + h), \]

\[= \frac{1 - \alpha}{2 + \alpha}, \quad y = (x_1 + 2h, x_2), \]

\[= \frac{1 - \beta}{2 + \beta}, \quad y = (x_1, x_2 + 2h), \]

\[= 0, \quad \text{otherwise}. \]

(2.1)

Similar formulas apply at other points of \(\Omega_h^{(3)} \). One special case may arise, as shown in Fig. 1, where \((x_1, x_2 + h), (x_1, x_2 + 2h)\) do not lie in \(\Omega \).

![Figure 1](image_url)

In such a case \(x \) would be excluded from the difference scheme altogether and the point \((x_1 + h, x_2)\) would be added to \(\Omega_h^{(3)} \). For the new point, formula (2.1) would be used with \(1 < \alpha \leq 2 \). If \(\partial \Omega \) has bounded curvature and \(h \) is sufficiently small, there will be no difficulty with the new point.

Next, let \(\Omega_h^{(2)} \) be those points of \(S_h \cap \Omega \), not in \(\Omega_h^{(3)} \) or excluded, which have a nearest neighbor in \(\Omega_h^{(3)} \). For \(x \in \Omega_h^{(2)} \) define

\[h^2 l_h(x, y) = \begin{cases} 4, & y = x, \\ -1, & |x - y| = h, \ y \in S_h, \\ 0, & \text{otherwise}. \end{cases} \]

(2.2)

Finally, let \(\Omega_h' \) be those points of \(S_h \cap \Omega \) not in \(\Omega_h^{(2)} \cup \Omega_h^{(3)} \) or excluded. For \(x \in \Omega_h' \) define

\[h^2 l_h(x, y) = \begin{cases} 5, & y = x, \\ -\frac{3}{4}, & |x - y| = h, \ y \in S_h, \\ \gamma_{h}, & |x - y| = 2h, \ y \in S_h, \\ 0, & \text{otherwise}. \end{cases} \]

(2.3)
Let \(\Omega_h = \Omega_h^1 \cup \Omega_h^{(2)} \cup \Omega_h^{(3)} \). We approximate the Laplacian of a function \(u \) vanishing on \(\partial \Omega \) by
\[
-\Delta_h u(x) = \sum_{y \in \partial \Omega_h} I_h(x, y) u(y), \quad x \in \Omega_h.
\]

Let us agree to use \(C \) as a generic constant, whose value may change at each usage, but which is always independent of \(h \). Then, if also \(u \in C^6(\Omega) \) (\(u \) has continuous sixth derivatives on the closure of \(\Omega \)), it can be seen from Taylor series expansions that
\[
|\Delta u(x) - \Delta_h u(x)| \leq Ch^4, \quad x \in \Omega_h,
\]
\[
\leq Ch^2, \quad x \in \Omega_h^{(2)} \cup \Omega_h^{(3)}.
\]

Bramble and Hubbard used \(\Delta_h \) in [2] in approximating the Dirichlet problem for Poisson’s equation.

Our difference scheme approximating (1.1) is
\[
\Delta_h U_h(x) + \lambda_h U_h(x) = 0, \quad x \in \Omega_h.
\]

Problem (2.6) is equivalent to finding the eigenvalues and eigenvectors of the matrix \([I_h(x, y)]_{x,y \in \Omega_h}\). In the next section, we develop some tools to use in studying this matrix which, however, have some independent interest.

3. Monotone Matrices

Let \(A = (a_{ij}) \) be an \(n \times n \) matrix. We say \(A \succeq 0 \) if each \(a_{ii} \geq 0 \) and \(A \preceq B \) if \(B - A \succeq 0 \). The matrix \(A \) is monotone if \(Ax \succeq 0 \) implies \(x \succeq 0 \) for all \(x \). Thus, \(A \) is monotone if and only if \(A^{-1} \) exists and \(A^{-1} \succeq 0 \). An easily recognized type of monotone matrix is a matrix of positive type. The matrix \(A \) is of positive type if \(A \) is indecomposable, the diagonal of \(A \) is positive, the off-diagonal elements negative, and the row sums are nonnegative with at least one strictly positive. The following theorem is due to Price [8]:

Theorem 3.1. \(A \) is monotone if and only if there exists \(M \) monotone such that
\begin{enumerate}[(i)]
 \item \(M^{-1}(M - A) \succeq 0 \),
 \item \(\rho(M^{-1}(M - A)) < 1 \).
\end{enumerate}

Here \(\rho \) denotes spectral radius, the maximum of the moduli of the eigenvalues. Here and in the corollaries, the “only if” part is trivial: take \(M = A \). This theorem generalizes Theorem 2.7 of Bramble and Hubbard [2]. There are a number of important corollaries:

Corollary 3.2. \(A \) is monotone if and only if there exists \(M \) monotone such that
\begin{enumerate}[(i)]
 \item \(M \succeq A \),
 \item \(\rho(M^{-1}(M - A)) < 1 \).
\end{enumerate}

Corollary 3.3. \(A \) is monotone if and only if there exists \(M \) monotone and \(x > 0 \) such that
\begin{enumerate}[(i)]
 \item \(M \succeq A \),
 \item \(Ax > 0 \).
\end{enumerate}

Proof. By the Gerschgorin circle theorem (see [7, p. 152]),
\[
\rho(M^{-1}(M - A)) \leq \max_i [M^{-1}(M - A)x_i]/x_i < 1,
\]
since
\[
0 \leq [M^{-1}(M - A)x_i]i = x_i - [M^{-1}Ax_i]i < x_i,
\]
because \(Ax > 0 \), \(M^{-1} \succeq 0 \) and no row of \(M^{-1} \) can be all zero.
Corollary 3.4. A is monotone if and only if there exists M monotone and $x \geq 0$ such that

(i) $M \geq A$,
(ii) $Ax > 0$.

Proof. Let $\delta = \min_i |Ax|, > 0$ and let $\epsilon = \delta/(2 \max_i \sum_i |a_{i,j}|).$ Then $x + \epsilon > 0$ and $A(x + \epsilon) > 0$, so the hypotheses of Corollary 3.4 are satisfied.

Corollary 3.5. A is monotone if and only if there exist M_1, M_2 monotone such that

$M_1 \leq A \leq M_2$.

Proof. Let x be such that $M_1 x$ is the vector with all components 1. Since M_1 is monotone, x exists and $x \geq 0$. Also, $Ax \geq M_1 x > 0$, so the hypotheses of Corollary 3.4 are satisfied.

Corollary 3.6. A is monotone if there is $\alpha > 0$ such that $A + \alpha I$ is monotone and every eigenvalue λ of A has positive real part.

Proof. Apply Corollary 3.2. We need only show $\rho((A + \alpha I)^{-1}) < \alpha^{-1}$. But $\rho((A + \alpha I)^{-1}) = 1/\min_{\lambda} |\alpha + \lambda|$, where λ runs over the eigenvalues of A.

At this time, we also note the following:

Lemma 3.7. If the partitioned matrix

\[
\begin{bmatrix}
A & B \\
C & D
\end{bmatrix}
\]

with A invertible has inverse

\[
\begin{bmatrix}
W & X \\
Y & Z
\end{bmatrix}
\]

then $W - A^{-1} = -XCA^{-1}$. In particular, if $X \geq 0, A^{-1} \geq 0, C \leq 0$, then $A^{-1} \leq W$.

Proof. Since

\[
\begin{bmatrix}
W & X \\
Y & Z
\end{bmatrix} \begin{bmatrix}
A & B \\
C & D
\end{bmatrix} = \begin{bmatrix}
I & 0 \\
0 & I
\end{bmatrix},
\]

we have $WA + XC = I$. Multiply on the right by A^{-1}.

4. Discrete Green’s Functions. The main tools in our investigations will be discrete analogues of Green’s function. These are inverses of matrices related to $[\mathbf{h}_2 l_h(x, y)]_{x, y \in a_k}$ and their nonnegativity is crucial to the investigation. This will be established, using results of the previous section.

We define then

\[\Delta h, s g_h(x, y) = h^{-2} \delta(x, y), x \in \Omega_k \cup \Omega^{(2)}_h, \quad g_h(x, y) = \delta(x, y), x \in \Omega^{(3)}_h,\]

for all $y \in \Omega_k$. This is the discrete Green’s function considered by Bramble and Hubbard in [2, Eq. (4.5)]. From (4.1), we see that the matrix $[g_h(x, y)]_{x, y \in a_k}$ is the inverse of the partitioned matrix

\[
\mathbf{M} = \begin{bmatrix}
A & B \\
0 & I
\end{bmatrix},
\]
where $A = [h^2 I(x, y)]_{x, y \in \Omega_{k^3} \cup \Omega_{k^2}}$, $B = [h^2 I(x, y)]_{x \in \Omega_{k^3} \cup \Omega_{k^2}, y \in \Omega_{k^2}}$, and I is the identity on $\Omega_{k^3} \times \Omega_{k^2}$. It also follows from Lemma 3.7 that the matrix
$[g_a(x, y)]_{x, y \in \Omega_{k^3} \cup \Omega_{k^2}}$ is the inverse of A. In [2], it was shown that

(4.2) $g_a(x, y) \geq 0, \quad x, y \in \Omega_k,$

i.e., Ω is monotone. Since g_a is the inverse, it follows that, for any function W defined on Ω_k, all $x \in \Omega_k$,

(4.3) $W(x) = h^2 \sum_{y \in \Omega_{k^3} \cup \Omega_{k^2}} g_a(x, y)[- \Delta_k W(y)] + \sum_{y \in \Omega_{k^2}} g_a(x, y) W(y).$

This is analogous to Poisson's formula. In [2], the following properties were proved of g_a:

(4.4) $\sum_{y \in \Omega_{k^3} \cup \Omega_{k^2}} g_a(x, y) \leq 1,$

(4.5) $\sum_{y \in \Omega_{k^2}} g_a(x, y) \leq C,$

(4.6) $h^2 \sum_{y \in \Omega_{k^3}} g_a(x, y) \leq C,$

for all $x \in \Omega_k$. Using these in (4.3), we have the inequality

(4.7) $\max_{\Omega_k} |W| \leq C \left[\max_{\Omega_k} |\Delta_k W| + h^2 \max_{\Omega_k} |\Delta_k W| \right] + \max_{\Omega_k} |W|.$

Now, on Ω_{k^3}, we have

$W(x) = \left[-h^2 \Delta_k W(x) - h^2 \sum_{y \in \Omega_{k^3} \cup \Omega_{k^2}} l_a(x, y) W(y) \right] / h^2 l_a(x, x),$

and from this and (2.1), we see that

(4.8) $\max_{\Omega_{k^2}} |W| \leq C h^2 \max_{\Omega_{k^2}} |\Delta_k W| + \theta \max_{\Omega_k} |W|,$

where

$\theta = \max_{x \in \Omega_{k^3} \cup \Omega_{k^2}} \sum_{y \in \Omega_{k^3} \cup \Omega_{k^2}} \left|l_a(x, y) / l_a(x, x)\right| < 1.$

Putting (4.8) into (4.7) and rearranging, we have

(4.9) $\max_{\Omega_k} |W| \leq C \left[\max_{\Omega_k} |\Delta_k W| + h^2 \max_{\Omega_{k^2} \cup \Omega_{k^2}} |\Delta_k W| \right].$

Let us now use (4.7) to estimate $W = \Phi_k - \varphi$ where φ is the torsion function defined by $\Delta \varphi = -1$ on Ω, $\varphi = 0$ on $\partial \Omega$ and $\Phi_k(x) = h^2 \sum_{y \in \Omega_{k^2}} g_a(x, y)$, which satisfies $\Delta_k \Phi_k = -1$ on $\Omega_{k^3} \cup \Omega_{k^2}$. If $\partial \Omega$ is sufficiently smooth, φ satisfies (2.5) and we see from (4.7) that

$\max_{\Omega_k} |\Phi_k - \varphi| \leq C h^4 + \max_{\Omega_{k^2} \cup \Omega_{k^2}} |\Phi_k - \varphi| \leq C h^4 + \max_{\Omega_{k^2}} |\Phi_k| + \max_{\Omega_{k^2}} |\varphi|.$

Now, $\varphi = 0$ on $\partial \Omega$, so $|\varphi(x)| \leq C h$ for $|x - \partial \Omega| = \min_{x \in \partial \Omega} |x - y| \leq C h$. Also, $\Phi_k = h^2$ on Ω_{k^2} by definition. Hence,

$|\Phi_k(x)| \leq |\varphi(x)| + \max_{\Omega_k} |\Phi_k - \varphi| \leq C h.$
for $|x - \partial \Omega| \leq Ch$, i.e.,

$$h^2 \sum_{y \in \Omega_h} g_h(x, y) \leq Ch.$$

Next, we consider the function

$$f_h(x, y) = C_1 - C_2 \log (|x - y|^2 + h^2).$$

It is easily verified that

$$-\Delta_h f_h(x, y) \geq 0, \quad x \in \Omega_h' \cup \Omega_h^{(2)}, \quad y \neq x,$$

$$-\Delta_h f_h(x, y) \geq h^{-2}, \quad x \in \Omega_h' \cup \Omega_h^{(2)}, \quad y = x,$$

provided $C_2 \geq \tfrac{1}{2} \log 2$. If we choose

$$C_1 = C_2 \max_{x, y \in \Omega_h} \log (|x - y|^2 + h^2),$$

then $f_h(x, y) \geq 0$ for $x, y \in \Omega$. Thus, we see that

$$\mathcal{M}(f_h - g_h) \geq 0,$$

and, since \mathcal{M} is monotone,

$$0 \leq g_h(x, y) \leq C_1 - C_2 \log (|x - y|^2 + h^2).$$

Analogous inequalities to (4.11) are proved by Bramble and Thomée in [3] for discrete Green's functions of positive-type operators. Here, we see monotonicity was sufficient.

An easy consequence of (4.11) is

$$h^2 \sum_{y \in \Omega_h} [g_h(x, y)]^2 \leq C.$$

5. More Inequalities for Green's Functions. This section will be devoted to derivations of some inequalities of more difficulty than those of the previous section. Recall that $\mathcal{O} = [g_h(x, y)]_{x, y \in \Omega_h}$ is the inverse of $[h^2 f_h(x, y)]_{x, y \in \Omega_h}$.

The inequality which we next wish to derive is

$$(5.1) \quad \sum_{x \in \Omega_h} g_h(x, y) \leq C$$

for all $x \in \Omega_h$, where $\Omega_h' = \{x \in \Omega_h'; f_h(x, y) \neq 0 \text{ for some } y \in \Omega_h^{(2)} \cup \Omega_h^{(3)}\}$. The method of proof is the matrix splitting technique employed by Bramble and Hubbard in [2]. The analysis which follows is regrettably detailed.

Let us write

$$(5.2) \quad \mathcal{O} = [I - H_1 - H_2]^{-1} \tilde{D}^{-1},$$

where \tilde{D} is the diagonal matrix with

$$\tilde{d}_{xx}^{-1} = 1, \quad x \in \Omega_h^{(3)},$$

$$= \tfrac{1}{3}, \quad x \in \Omega_h^{(2)},$$

$$= \tfrac{1}{5}, \quad x \in \Omega_h.$$
and

\[[H_1]_{xy} = \begin{cases} 0, & x \in \Omega_h', x \not\in \Omega_h, |x - y| = h, \\ \frac{1}{h}, & x \in \Omega_h^{(2)}, x \not\in \Omega_h, |x - y| = h, \\ 0, & \text{otherwise}, \end{cases} \]

\[[H_2]_{xy} = \begin{cases} 0, & x \in \Omega_h', x \not\in \Omega_h, |x - y| = h, \\ -\frac{1}{h}, & x \in \Omega_h^{(2)}, x \not\in \Omega_h, |x - y| = 2h, \\ \frac{1}{h}, & \text{otherwise}. \end{cases} \]

Let us define the diagonal matrix \(D \) by

\[
(d_{xx})^{-1} = \sum_{y \in \Omega_h} (I - H)_y = \frac{1}{h}, \quad x \in \Omega_h',
\]

\[
= \frac{1}{h}, \quad x \in \Omega_h^{(2)},
\]

\[
= 1, \quad x \in \Omega_h^{(3)},
\]

so that \(D(I - H) \) has row sums one, i.e.,

\[
\sum_{y \in \Omega_h} [D(I - H)]_{xy} = \sum_{y \in \Omega_h} [(I - H)^{-1}D^{-1}]_{xy} = 1. \tag{5.3}
\]

We write \([I - H_1 - H_2] = [D^{-1}(I - H)]D(I - H_1)]\), where \(H = DH_2(I - H_1)^{-1}D^{-1} \).

Thus, by (5.3),

\[
\sum_{y \in \Omega_h} [D^{-1}(I - H)]_{xy} = \sum_{y \in \Omega_h} [D^{-1}(I - H)]_{xy}D(I - H_1)]_{xy}
\]

\[
\sum_{x \in \Omega_h} [I - H_1 - H_2]_{xx} = 0, \quad x \in \Omega_h' \cup \Omega_h^{(2)},
\]

\[
= 1, \quad x \in \Omega_h^{(3)}. \tag{5.4}
\]

Now, we consider the characteristic function of \(\Omega_h' \):

\[
\chi(x) = \begin{cases} 1, & x \in \Omega_h', \\ 0, & x \in \Omega_h^{(2)} \cup \Omega_h^{(3)}. \end{cases}
\]

Then

\[
1 \geq \chi(x) = \left[((I - H)^{-1}D)[D^{-1}(I - H)\chi]\right]_x
\]

\[
= \sum_{y \in \Omega_h} [(I - H)^{-1}D]_{xy}[D^{-1}(I - H)\chi]_x
\]

\[
+ \sum_{y \in \Omega_h^{(2)} \cup \Omega_h^{(3)}} [(I - H)^{-1}D]_{xy}[D^{-1}(I - H)\chi]_x
\]

\[
= \sum_{y \in \Omega_h} [(I - H)^{-1}D]_{xy} \sum_{x \in \Omega_h} [D^{-1}(I - H)]_{xx}
\]

\[
- \sum_{y \in \Omega_h} [(I - H)^{-1}D]_{xy} [D^{-1}(I - H)(1 - \chi)]_x
\]

\[
+ \sum_{y \in \Omega_h^{(2)} \cup \Omega_h^{(3)}} [(I - H)^{-1}D]_{xy} [D^{-1}(I - H)\chi]_x.
\]
By (5.4), the first term vanishes. Using the definitions of H and χ, this can be written as

$$
\sum_{y \in \Omega} [(I - H)^{-1}D]_{xy} \sum_{y \in \Omega} (H_3(I - H_1)^{-1}D^{-1})_{yx}
$$

(5.5)

$$
- \sum_{y \in \Omega \cap \Omega_4} [(I - H)^{-1}D]_{xy} \sum_{y \in \Omega} (H_3(I - H_1)^{-1}D^{-1})_{yx} \leq 1.
$$

Now, we estimate the factors in each term. First, note that $(I - H)^{-1} \geq 0$. This is not obvious, but follows from $H \geq 0$ and $\rho(H) < 1$. That $H \geq 0$, is due to $0 \leq H_3(I - H_1)^{-1} = H_2 + H_2H_1 + \cdots$, since the negative terms in H_2 are cancelled by positive terms in H_2H_1 as in [2]. That $\rho(H) < 1$ is due to $\rho(H) = \rho((I - H_1)^{-1}H_2) < 1$, since the row sums of

$$(I - (I - H_1)^{-1}H_2) = (I - H_1)^{-1}(I - H_1 - H_2)$$

$$= (I - H_1 - H_2) + H_1(I - H_1 - H_2) + \cdots$$

are positive. Again negative row sums of $(I - H_1 - H_2)$ are cancelled by corresponding positive row sums of $H_1(I - H_1 - H_2)$.

Next, for $y \in \Omega_2 \cup \Omega_4$

$$
\sum_{y \in \Omega} (H_2(I - H_1)^{-1}D^{-1})_{yx} \leq \sum_{y \in \Omega} (D^{-1} - D^{-1}(I - H))_{yx} \leq 1 - \sum_{y \in \Omega} (I - H_1 - H_2)_{yx} \leq 1.
$$

Now, we consider, for $y \in \Omega_3'$, the term

$$
(5.6) \sum_{y \in \Omega} (H_2(I - H_1)^{-1}D^{-1})_{yx}.
$$

Expanding the summand in a Neumann series, it becomes

$$
[(H_2 + H_2H_1 + H_2H_1^2 + \cdots)D^{-1}]_{yx}.
$$

If $y \in \Omega_3'$, $z \in \Omega_2 \cup \Omega_4$ is such that $|y - z| = 2h$, then $[H_2]_{yx} = -1/60$. However, let x be the point such that $|y - x| = |x - z| = h$. Then $[H_2H_1]_{yx}$ contains the term $[H_2]_{yx}[H_1]_{yx} = 4/225$. Similarly, each negative term in $H_2H_1^2$ is compensated for by a positive term in $H_2H_1^{2t}$, Thus, for $y \in \Omega_3'$,

$$
\sum_{y \in \Omega} (H_2(I - H_1)^{-1}D^{-1})_{yx} \geq \left(-\frac{1}{60} + \frac{4}{225}\right) \frac{1}{2} = \frac{1}{1800}.
$$

It follows from (5.5) and the above that

$$
(5.7) \sum_{y \in \Omega} [(I - H)^{-1}D]_{xy} \leq 1800 \left(1 + \sum_{y \in \Omega} (H_2(I - H_1)^{-1}D^{-1})_{yx}\right).
$$

By similar reasoning, using the function

$$
\chi(x) = 1, \quad x \in \Omega_4 \cup \Omega_2 \cup \Omega_4 \cup \Omega_4,
$$

$$
= 0, \quad x \in \Omega_2 \cup \Omega_4 \cup \Omega_3 \cup \Omega_4,
$$

it can be shown that $\sum_{y \in \Omega} [(I - H)^{-1}D]_{xy} \leq C$. The argument is carried out in [2, Lemma 3.3]. Finally, we note from (5.4) that
Combining the above with (5.7), we see that
\[
(5.9) \quad \sum_{\nu \in \Omega_k} [(I - H)^{-1} D]_{\nu y} \leq C.
\]
From (5.2) and (5.3), we finally have
\[
(5.10) \quad \sum_{\nu \in \Omega_k} g_k(x, y) = \sum_{\nu \in \Omega_k} [(I - H_1 - H_2)^{-1} D^{-1}]_{\nu y} = \frac{1}{3} \sum_{\nu \in \Omega_k} [(I - H_1 - H_2)^{-1}]_{\nu y}
\]
\[
= \frac{1}{3} \sum_{\nu \in \Omega_k} \sum_{\nu \in \Omega_k} [(D(I - H_1)]^{-1}]_{\nu y} [(I - H)^{-1} D]_{\nu y}
\]
\[
\leq \frac{1}{3} \max_{\nu \in \Omega_k} \sum_{\nu \in \Omega_k} [(I - H)^{-1} D]_{\nu y},
\]
or, from (5.9),
\[
(5.10) \quad \sum_{\nu \in \Omega_k} g_k(x, y) \leq C,
\]
the desired estimate.

We next define another Green's function \(G_k \) by
\[
(5.11) \quad -\Delta_k G_k(x, y) = \lambda_k^2 \delta(x, y), \quad x, y \in \Omega_k.
\]
Although \(G_k \) may not be nonnegative, it is a perturbation of \(g_k \). We have

Theorem 5.1. For any mesh function \(S \),
\[
(5.12) \quad \max_{x \in \Omega_k} \sum_{\nu \in \Omega_k} |[G_k(x, y) - g_k(x, y)] S(y)| \leq C \max_{\nu \in \Omega_k} |S| + \max_{\nu \in \Omega_k} \sum_{\nu \in \Omega_k} \sum_{\nu \in \Omega_k} g_k(x, y) |S(y)|.
\]

Proof. Let \(x_0 \in \Omega \) be the point where \(\sum_{\nu \in \Omega_k} |[G_k(x, y) - g_k(x, y)] S(y)| \) attains its maximum and let
\[
W(x) = \sum_{\nu \in \Omega_k} [G_k(x, y) - g_k(x, y)] S^*(y),
\]
where \(S^*(y) = |S(y)| \text{ sgn} [G_k(x_0, y) - g_k(x_0, y)] \), Employing (4.9), we have
\[
\max_{\Omega_k} |W| \leq C \max_{\nu \in \Omega_k} |h^2 \Delta_k W|
\]
\[
\leq C \left[\max_{\nu \in \Omega_k} |S| + \max_{\nu \in \Omega_k} \sum_{\nu \in \Omega_k} \sum_{\nu \in \Omega_k} g_k(x, y) S^*(y) \right],
\]
and (5.12) follows.

Corollary 5.2. For all \(x, z \in \Omega_k \),
\[
(5.13) \quad \sum_{\nu \in \Omega_k} |G_k(x, y)| \leq C,
\]
\[
(5.14) \quad h^2 \sum_{\nu \in \Omega_k} |G_k(x, y)| \leq C,
\]
\[
(5.15) \quad |G_k(x, z)| \leq C \log h,
\]
\[
(5.16) \quad h^2 \sum_{\nu \in \Omega_k} |G_k(x, y)|^2 \leq C,
\]

and for $|x - \partial \Omega| \leq C h$,

\begin{equation}
(5.17) \quad h^2 \sum_{y \in \Omega_h} |G_h(x, y)| \leq C h.
\end{equation}

Proof. For (5.13), employ the characteristic function of $\Omega_h^* \cup \Omega_h^{(2)} \cup \Omega_h^{(3)}$ as S in (5.13). Then apply the triangle inequality and (4.4), (4.5), and (5.10). For (5.14), let $S = h^2$ and use (4.6) and (4.10), respectively. For (5.15), let $S(y) = \delta(y, z)$ in (5.12), apply the triangle inequality and (4.11). For (5.16), let x_0 be the point where $\max_{x \in \Omega_h} h^2 \sum_{y \in \Omega_h} |G_h(x, y)|^2$ is attained, and let $S(y) = h^2 G_h(x_0, y)$ in (5.12), from which it follows that

\[h^2 \sum_{y \in \Omega_h} |G_h(x, y)|^2 \leq C h^2 \max_{x \in \Omega_h} |G_h(x, y)| + \max_{x \in \Omega_h} h^2 \sum_{y \in \Omega_h} g_h(x, y) G_h(x_0, y). \]

Again, using (5.12) with $S(y) = h^2 g_h(x, y)$ for x fixed,

\[h^2 \sum_{y \in \Omega_h} G_h(x_0, y) g_h(x, y) \leq C h^2 \max_{x \in \Omega_h} |g_h(x, y)| + \max_{x \in \Omega_h} h^2 \sum_{y \in \Omega_h} g_h(x, y) g_h(x, y). \]

By (4.11), this term can be seen to be bounded. Finally, letting $S(y) = h^2 \delta(y_0, y)$ in (5.12), we have, for any $y_0 \in \Omega_h$,

\[|h^2 G_h(x_0, y_0)| \leq C \left[h^2 + \max_{x \in \Omega_h} h^2 g_h(x, y_0) \right], \]

which indeed tends to zero as h does, by (4.11), and (5.16) follows. For (5.17) use $S = h^2$ and (4.10).

We require yet one more Green’s function G'_h defined by

\begin{equation}
(5.18) \quad -\Delta_h G'_h(x, y) = h^2 \delta(x, y), \quad x \in \Omega_h^*, \quad G'_h(x, y) = 0, \quad x \in \Omega_h^{(2)} \cup \Omega_h^{(3)},
\end{equation}

for all $y \in \Omega_h$. Thus, the matrix $[G'_h(x, y)]_{x \in \Omega_h^*, y \in \Omega_h^*}$ is the inverse of the symmetric matrix $\mathcal{A} = [h^2 h(x, y)]_{x \in \Omega_h^*, y \in \Omega_h^*}$. We show \mathcal{A} is monotone by applying Corollary 3.6. First, we show $\mathcal{A} + \frac{1}{2} I$ monotone from Corollary 3.5: we define M_1 by

\[[M_1]_{x y} = \begin{cases} \frac{16}{3}, & x = y, \\ -\frac{4}{3}, & |x - y| = h, \\ 0, & \text{otherwise}, \end{cases} \]

for $x, y \in \Omega_h^*$, and we define

\[[M_2]_{x y} = \begin{cases} \frac{8}{\sqrt{12}}, & x = y, \\ -\frac{1}{\sqrt{12}}, & |x - y| = h, \\ 0, & \text{otherwise}. \end{cases} \]

Since M_1 and M_2 are of positive type, they are monotone, hence, so is M_2^*, and it is easy to see that

\[M_1 \leq \mathcal{A} + \frac{1}{2} I \leq M_2^*. \]
Thus, \(\mathcal{E} \) is monotone if its eigenvalues, necessarily real by symmetry, are positive. But these are \(h^2 \mu_h^{(i)} \), where \(\mu_h^{(i)} \) is the \(i \)th eigenvalue satisfying

\[
\Delta_h V_h^{(i)}(x) + \mu_h^{(i)} V_h^{(i)}(x) = 0, \quad x \in \Omega_h, \quad V_h^{(i)}(x) = 0, \quad x \in \Omega_h^{(2)} \cup \Omega_h^{(3)}.
\]

In the next section, we shall show that indeed \(|\mu_h^{(i)} - \lambda^{(i)}| \to 0 \) as \(h \to 0 \), for \(\lambda^{(i)} \) the \(i \)th eigenvalue of (1.1), which is strictly positive. Thus, for \(h \) sufficiently small, \(\mathcal{E} \) is monotone and \(G_t' \) nonnegative. Thus, as a consequence of Lemma 3.7,

\[
(5.20) \quad 0 \leq G_t'(x, y) \leq g_h(x, y), \quad x, y \in \Omega_h.
\]

From (5.20), we see that all of the inequalities proved for \(g_h \) hold for \(G_t' \). In particular, the difficult inequality (5.10) does, from which we prove the key inequality

\[
(5.21) \quad \max_{\Omega_h} |W| \leq C \left[\max_{\Omega_h} |\Delta_h W| + \max_{\Omega_h^{(2)} \cup \Omega_h^{(3)}} |W| \right],
\]

for all \(W \) defined on \(\Omega_h \). To prove this, let

\[
W^*(x) = W(x), \quad x \in \Omega_h',
\]

\[
= 0, \quad x \in \Omega_h^{(2)} \cup \Omega_h^{(3)}.
\]

Then, by (5.18),

\[
W^*(x) = h^2 \sum_{y \in \Omega_h'} G_t'(x, y)[-\Delta_h W^*(y)]
\]

\[
= h^2 \sum_{y \in \Omega_h'} G_t'(x, y)[-\Delta_h W(y)] + h^2 \sum_{y \in \Omega_h'} G_t'(x, y)[\Delta_h W(y) - \Delta_h W^*(y)],
\]

and (5.21) follows from (4.6), (5.10), and (5.20).

6. Convergence of \(\mu_h^{(n)} \) to \(\lambda^{(n)} \). In this section, we show that the eigenvalue \(\mu_h^{(n)} \) of

\[
(6.1) \quad \Delta_h V_h^{(n)}(x) + \mu_h^{(n)} V_h^{(n)}(x) = 0, \quad x \in \Omega_h', \quad V_h^{(n)}(x) = 0, \quad x \in \Omega_h^{(2)} \cup \Omega_h^{(3)},
\]

converges to \(\lambda^{(n)} \) of (1.1) for each \(n \). We will use the variational principles associated with (1.1) and (6.1), and a technique of Weinberger [9].

The \(n \)th eigenvalue of (1.1) can be characterized by

\[
(6.2) \quad \lambda^{(n)} = \min \max D(u) \int_\Omega u^2 \, dx,
\]

where \(u = \alpha_1 U_1 + \cdots + \alpha_n U_n \), the max is with respect to the scalars \(\alpha_1, \ldots, \alpha_n \), the min is with respect to choices of linearly independent \(u_1, \ldots, u_n \), continuous, piecewise differentiable functions vanishing on \(\partial \Omega \), and \(D(u) \) is the Dirichlet integral.

Similarly, the \(n \)th eigenvalue of (6.1) can be characterized by

\[
(6.3) \quad \mu_h^{(n)} = \min \max \frac{h^2 \sum \left[U_{x_i}^2 + U_{x_i}^2 + \frac{h^2}{12} U_{x_i x_i}^2 + \frac{h^2}{12} U_{x_i x_i}^2 \right]}{h^2 \sum \ell^2},
\]

where \(\ell = \alpha_1 U_1 + \cdots + \alpha_n U_n \), the max is with respect to the scalars \(\alpha_1, \ldots, \alpha_n \), the min is with respect to choices of linearly independent mesh functions \(U_1, \ldots, U_n \) vanishing on \(\Omega_h^{(2)} \cup \Omega_h^{(3)} \), the sum is over the mesh points of \(\Omega_h \), and subscript \(x_i \).
denotes forward (backward) difference quotient in the \(x_i\) direction, \(i = 1, 2,\) i.e.,

\(U_{x_i}(y_1, y_2) = [U(y_1 + h, y_2) - U(y_1, y_2)]/h,\) etc.

First, we show

\[(6.4) \quad \mu_h^{(n)} \leq \lambda^{(n)} + O(h).\]

Let \(u^{(1)}, \ldots, u^{(n)}\) be eigenfunctions associated with \(\lambda^{(1)}, \ldots, \lambda^{(n)}\) in (1.1), \(u = \alpha_1 u^{(1)} + \cdots + \alpha_n u^{(n)}\), and define

\[u(x) = h^{-1} \int_{Q_h(x)} u(y) \, dy, \quad x \in \Omega_h',\]

\[= 0, \quad x \in \Omega_h^{(2)} \cup \Omega_h^{(3)},\]

where \(Q_h(x) = \{(y_1, y_2): |x_1 - y_1| \leq \frac{1}{2}h, |x_2 - y_2| \leq \frac{1}{2}h\}\) is the square of side \(h\) centered at \(x\). Put this \(U\) in (6.3). Employing inequalities (2.14), (2.22) and (8.6) of Weinberger [9], we see that

\[p_k n \leq \max_{\alpha} \frac{h^2}{12} \int_0 \left(\frac{\partial^2 u}{\partial x_1^2}\right)^2 + \left(\frac{\partial^2 u}{\partial x_2^2}\right)^2 \, dx,\]

and Hubbard [5, pp. 568–569], has shown

\[\int_0 \left(\frac{\partial^2 u}{\partial x_1^2}\right)^2 + \left(\frac{\partial^2 u}{\partial x_2^2}\right)^2 \, dx \leq C(\lambda^{(n)})^2.\]

From these, (6.4) follows.

Next, we show

\[(6.5) \quad \lambda^{(n)} \leq \mu_h^{(n)} + O(h).\]

Let \(V^{(1)}_h, \ldots, V^{(n)}_h\) be eigenvectors associated with \(\mu_h^{(1)}, \ldots, \mu_h^{(n)}\) in (6.1), \(U = \alpha_1 V^{(1)}_h + \cdots + \alpha_n V^{(n)}_h\), and define \(u\) to be the continuous, piecewise linear function interpolating \(U\) (see [9, Section 6]). Then, by (6.4), (6.7) of [9] we see that

\[\lambda^{(n)} \leq \max_{\alpha} \frac{h^2}{12} \sum \frac{U_{x_i}^2 + U_{x_i x_i}^2}{h^2} \sum \left(U_{x_i}^2 + U_{x_i x_i}^2\right)\]

\[\leq \max_{\alpha} \frac{h^2}{12} \sum \left[U_{x_i}^2 + U_{x_i x_i}^2 + \frac{h^2}{12} U_{x_i x_i}^2, + \frac{h^2}{12} U_{x_i x_i}^2\right]

\[= \frac{\mu_h^{(n)}}{1 - \frac{h^2}{12} \mu_h^{(n)}}\]

and we obtain (6.5). Combining (6.4) and (6.5), we have

\[(6.6) \quad |\mu_h^{(n)} - \lambda^{(n)}| \to 0 \quad \text{as} \quad h \to 0,\]

for each \(n = 1, 2, \ldots\).
7. Convergence of \(\lambda_i^{(n)} \) to \(\lambda_i^{(n)} \) by Perturbation. Next, we will show that the \(\lambda_i^{(n)} \) are a perturbation of the \(\lambda_i^{(n)} \), and that as \(h \) tends to zero, \(\lambda_i^{(n)} \) tends to \(\mu_i^{(n)} \), hence to \(\lambda_i^{(n)} \), by Section 6. We employ the following theorem of Wielandt:

Theorem 7.1. If \(A, B \) are \(\nu \times \nu \) matrices and \(A \) has an orthonormal basis of eigenvectors, then the eigenvalues of \(B \) lie in the union of the \(\nu \) discs \(|\mu - z| \leq ||A - B||_2 \), where the \(\mu_i \) are the eigenvalues of \(A \). If \(k \) discs are disjoint from the others, they contain exactly \(k \) eigenvalues of \(B \).

In the theorem, \(||\cdot||_2 \) is the spectral norm of a matrix, defined by

\[
||M||_2 = \sup \{ ||M\xi||_2 / ||\xi||_2 \}, \quad \text{where} \quad ||\xi||_2 = \left(\sum_{i=1}^\nu |\xi_i|^2 \right)^{1/2}
\]

for a \(\nu \)-vector \(\xi = (\xi_1, \cdots, \xi_\nu) \). For a proof of the theorem, see [6].

We apply the theorem as follows. For \(A \), we take the matrix \([h^2G(x, y)]_{x, y} \in \Omega_h^{(2)} \). Note that the minor \([h^2G(x, y)]_{x, y} \in \Omega_h^{(2)} \) is symmetric, while \(h^2G(x, y) = 0 \) for \(x \in \Omega_h^{(2)} \). For \(B \), we take the matrix \([h^2G(x, y)] \) whose eigenvalues are \([\lambda_i^{(n)}]^{-1} \). Thus, we must estimate \(||h^2(G_h - G_i)||_2 \). However, for any matrix,

\[
||M||_2 \leq [\rho(MM^T)]^{1/2} \leq ||MM^T||_1^{1/2},
\]

where \(||\cdot||_1 \) is the maximum of the absolute row sums of the matrix. This is a consequence of the Gerschgorin circle theorem (see, e.g., [7, p. 146]). Thus, we need to estimate

\[
(7.1) \quad h^4 \max_{x \in \Omega_h^{(2)}} \sum_{y \in \Omega_h^{(2)}} |[G_h(x, z) - G_i(x, z)][G_i(y, z) - G_i(y, z)]|.
\]

Let \(x_0 \) be the point where the max is attained and put

\[
\sigma(y) = \text{sgn}\ \sum_{x \in \Omega_h^{(2)}} |[G_h(x_0, z) - G_i(x_0, z)][G_i(y, z) - G_i(y, z)]|.
\]

Then, let

\[
W(x) = h^4 \sum_{y, z \in \Omega_h^{(2)}} |[G_h(x, z) - G_i(x, z)][G_i(y, z) - G_i(y, z)]\sigma(y)
\]

in (4.9). Then, (7.1) is bounded by

\[
(7.2) \quad Ch^4 \max_{x \in \Omega_h^{(2)}} \sum_{y \in \Omega_h^{(2)}} |G_h(y, z) - G_i(y, z)| + Ch^4 \max_{x \in \Omega_h^{(2)}} \sum_{y \in \Omega_h^{(2)}} |G_h(x, z) - G_i(x, z)|.
\]

Now,

\[
h^2 \sum_{y \in \Omega_h^{(2)}} |G_h(y, z) - G_i(y, z)| \leq C \max_{y, z \in \Omega_h^{(2)}} [||G_h(y, z)|| + ||G_i(y, z)||] \leq C|\log h|,
\]

by (4.11), (5.15) and (5.20). Using this in (7.2) and also (4.10) and (5.20), we have (7.2) bounded by \(Ch|\log h| \), which tends to zero as \(h \) tends to zero. Thus, the radii of the discs in Theorem 7.1 tend to zero as \(h \) does. Since the \(\mu_i^{(n)} \) tend to the \(\lambda_i^{(n)} \), which have no finite accumulation point, the disc associated with \([\mu_i^{(n)}]^{-1} \) for any
fixed \(n\) eventually becomes disjoint from the remaining discs. Consequently, for any fixed \(n\) and \(\epsilon > 0\), there is \(h\) sufficiently small that

\[
|\lambda_h^{(n)} - \lambda^{(n)}| < \epsilon.
\]

8. Main Theorem. We are now ready to state and prove our main theorem:

Theorem 8.1. Let \(\lambda^{(n)}\) be the \(n\)th eigenvalue of (1.1), let \(\lambda_h^{(n)}\) be the \(n\)th eigenvalue of (2.6) with associated eigenvector \(U_h^{(n)}\). For each \(n = 1, 2, \ldots\), there are constants \(C_n, h_n\) such that for \(h < h_n\)

\[
|\lambda_h^{(n)} - \lambda^{(n)}| < C_n h^4,
\]

and there is an eigenfunction \(u^{(n)}\) associated with \(\lambda^{(n)}\) such that

\[
\max_{\Omega_h} |U_h^{(n)} - u^{(n)}| < C_n h^4.
\]

Proof. With the machinery generated in the previous sections, our proof will have exactly the form of the proof of the corresponding Theorem 5.1 of [6]. For this reason, we only sketch the proof.

By (7.3)

\[
|\lambda_h^{(n)}| \leq C_n.
\]

By (5.11), (2.6) is equivalent to

\[
U_h^{(n)}(x) = \lambda_h^{(n)} h^2 \sum_{y \in \Omega_h} G(x, y) U_h^{(n)}(y), \quad x \in \Omega_h.
\]

Let us use the notations

\[
\langle U, V \rangle_h = h^2 \sum_{y \in \Omega_h} U(y) \overline{V(y)}, \quad ||U||_h = \langle U, U \rangle_h^{1/2},
\]

\[
\langle U, V \rangle_h' = h^2 \sum_{y \in \Omega_h} U(y) \overline{W(y)}, \quad ||U||_h' = \langle U, U \rangle_h'^{1/2}.\]

If \(U_h^{(n)}\) is normalized by requiring \(||U_h^{(n)}||_h = 1\), then (8.4), (8.3), the Schwarz inequality, and (5.16) show

\[
\max_{\Omega_h} |U_h^{(n)}| \leq C_n.
\]

From (8.4), (8.5) and (5.17), we see that for \(|x - \partial \Omega| \leq Ch\)

\[
|U_h^{(n)}(x)| \leq C_n h.
\]

Let us suppose that \(\lambda^{(n)} = \lambda^{(n+1)} = \cdots = \lambda^{(n+m)}\) is an eigenvalue of multiplicity \(m + 1\). Since \(\Delta_h\) restricted to \(\Omega_h\) is symmetric, the eigenvectors \(V_h^{(n)}\) of (6.1) are a complete orthonormal basis on \(\Omega_h\):

\[
\langle V_h^{(i)}, V_h^{(j)} \rangle_h = \delta(i, j).
\]

If we set

\[
P_h^{(i)} = \sum_{j=n}^{n+m} \langle U_h^{(i)}, V_h^{(j)} \rangle_h V_h^{(j)}, \quad i = n, \ldots, n + m,
\]

then
(8.7) \[\| U_h^{(i)} - \tilde{V}_h^{(i)} \|_h^2 \leq C_h, \quad i = n, \ldots, n + m. \]

This follows from Parseval's identity:
\[
\| U_h^{(i)} \|_h^2 = \langle U_h^{(i)}, V_h^{(i)} \rangle_h + \sum_{j=n, \ldots, n+m} |\langle U_h^{(i)}, V_h^{(j)} \rangle_h|^2
\]
\[
= \langle U_h^{(i)}, V_h^{(i)} \rangle_h + \sum_{j=n, \ldots, n+m} \left| \frac{\mu_h^{(i)}}{\mu_h^{(i)} - \lambda_h^{(i)}} \langle H_h^{(i)}, V_h^{(j)} \rangle_h \right|^2,
\]
where \(H_h^{(i)} \) is uniquely defined by
\[
\Delta_h H_h^{(i)}(x) = 0, \quad x \in \Omega', \quad H_h^{(i)}(x) = U_h^{(i)}(x), \quad x \in \Omega^{(2)} \cup \Omega^{(3)}.
\]

It follows from our hard-won inequality (5.21) that
\[
\max_{\Omega_h} |H_h^{(i)}| \leq \max_{\Omega_h^{(x)} \cup \Omega_h^{(x)}} |U_h^{(i)}| \leq C_h,
\]
by (8.6), and so
\[
\| U_h^{(i)} - \tilde{V}_h^{(i)} \|_h^2 = \| U_h^{(i)} \|_h^2 - \langle U_h^{(i)}, \tilde{V}_h^{(i)} \rangle_h \leq C_h h^2.
\]

In a very similar manner, we show that if
\[
\tilde{V}_h^{(i)} = \sum_{i=n}^{n+m} \langle U_h^{(i)}, V_h^{(i)} \rangle_h V_h^{(i)}, \quad i = n, \ldots, n + m,
\]
then
\[
(8.8) \quad \| U_h^{(i)} - \tilde{V}_h^{(i)} \|_h \leq C_h, \quad i = n, \ldots, n + m.
\]

From (8.8), we can conclude that the \((m+1) \times (m+1)\) matrix \([\langle u_h^{(i)}, V_h^{(j)} \rangle_h], i, j = n, \ldots, n + m\), is nonsingular. In particular then, there are eigenvectors
\[
u_h^{(i)} = \sum_{j=n}^{n+m} a_{ij}(h) u_h^{(i)}, \quad i = n, \ldots, n + m,
\]
in the eigenmanifold associated with \(\lambda^{(n)}\) such that
\[
\langle u_h^{(i)}, V_h^{(j)} \rangle_h = \langle U_h^{(i)}, V_h^{(j)} \rangle_h, \quad i, j = n, \ldots, n + m.
\]

Moreover, the coefficients \(a_{ij}(h)\) are bounded independently of \(h\).

Then, it follows from (8.9) and Parseval's identity that
\[
\| U_h^{(i)} - u_h^{(i)} \|_h^2 = h^2 \sum_{\Omega_h^{(x)} \cup \Omega_h^{(x)}} |U_h^{(i)} - u_h^{(i)}|^2 + \sum_{i=n, \ldots, n+m} |\langle U_h^{(i)} - u_h^{(i)}, V_h^{(i)} \rangle_h|^2
\]
\[
= h^2 \sum_{\Omega_h^{(x)} \cup \Omega_h^{(x)}} |U_h^{(i)} - u_h^{(i)}|^2
\]
\[
+ \sum_{i=n, \ldots, n+m} \left| \frac{\mu_h^{(i)}}{\mu_h^{(i)} - \lambda_h^{(i)}} \langle H_h^{(i)}, V_h^{(i)} \rangle_h - \frac{\mu_h^{(i)}}{\mu_h^{(i)} - \lambda_h^{(i)}} \langle F_h^{(i)}, V_h^{(i)} \rangle_h \right|^2,
\]
where \(F_h^{(i)}\) is defined by
\[
\Delta_h F_h^{(i)}(x) = 0, \quad x \in \Omega', \quad F_h^{(i)}(x) = u_h^{(i)}(x), \quad x \in \Omega^{(2)} \cup \Omega^{(3)}.
\]

Since \(|u_h^{(i)}(x)| \leq C_h\) for \(|x - \partial\Omega| \leq C_h\), we see that
\[
(8.10) \quad \| U_h^{(i)} - u_h^{(i)} \|_h \leq C_h.
\]
From (8.10), we also have
\begin{equation}
|\langle U_h^{(i)}, u_h^{(i)} \rangle_h| \geq 1 - C_i h^2. \tag{8.11}
\end{equation}

Inequality (8.11) is the key inequality needed to prove the first half of Theorem 8.1, for now
\begin{equation}
(\lambda_h^{(i)} - \lambda^{(i)}) (U_h^{(i)}, u_h^{(i)}) = \langle U_h^{(i)}, \Delta u_h^{(i)} - \Delta_h^{*} u_h^{(i)} \rangle_h \tag{8.12}
\end{equation}

obtained by adding and subtracting terms. We have used the notations
\[
\Delta_h u_h^{(i)} = \Delta u_h^{(i)} - \Delta_h^{*} u_h^{(i)}
\]
for the truncation error, and Δ_h^{*} for the adjoint of Δ_h defined by
\[
\Delta_h^{*} V(x) = \sum_{y \in \Omega_h} l_h(y, x) V(y).
\]

Recall by (2.6) and our smoothness assumption on $u^{(i)}$ that
\[
|\tau_h u_h^{(i)}| \leq C_i h^4, \quad \text{on } \Omega_h,
\]
\[
\leq C_i h^2, \quad \text{on } \Omega_h^{(2)} \cup \Omega_h^{(3)}.
\]

However, on $\Omega_h^{(2)} \cup \Omega_h^{(3)}$ both $U^{(i)}$ and $u_h^{(i)}$ are bounded by $C_i h$, while the number of points in $\Omega_h^{(2)} \cup \Omega_h^{(3)}$ is only proportional to h^{-1}. From these considerations, we see that the first three terms on the right side of (8.12) are bounded by $C_i h^4$. As the remaining term,
\[
\Delta_h u_h^{(i)}(x) - \Delta_h^{*} u_h^{(i)}(x)
\]
vanishes for $x \in \Omega_h^{(2)} \cup \Omega_h^{(3)}$, and is bounded by
\[
C_i h^{-2} \max_{\Omega_h \cup \Omega_h^{(2)} \cup \Omega_h^{(3)}} |u_h^{(i)}| \leq C_i h^{-1}
\]
for $x \in \Omega_h^{(2)} \cup \Omega_h^{(3)}$. Again noting that the number of points in $\Omega_h^{(2)} \cup \Omega_h^{(2)} \cup \Omega_h^{(3)}$ is only proportional to h^{-1}, the last term on the right of (8.12) is bounded by
\[
C_i \max_{\Omega_h^{(2)} \cup \Omega_h^{(3)}} |U_h^{(i)} - u_h^{(i)}| .
\]

Thus, using (8.11) we have the inequality
\begin{equation}
|\lambda_h^{(i)} - \lambda^{(i)}| \leq C_i \left[\max_{\Omega_h^{(2)} \cup \Omega_h^{(3)}} |U_h^{(i)} - u_h^{(i)}| + h^4 \right]. \tag{8.13}
\end{equation}

We next employ the discrete Green's function to write
\begin{equation}
U_h^{(i)}(x) - u_h^{(i)}(x) = h^2 \sum_{y \in \Omega_h} G_h(x, y) \Delta_h[u_h^{(i)}(y) - U_h^{(i)}(y)] \tag{8.14}
\end{equation}

Using inequalities (5.13) and (5.14), we see that the first term on the right of (8.14) is bounded by $C_i h^4$.

By (5.14) and (8.5) the last term on the right is bounded by
Approximation for the Fixed Membrane Eigenproblem

The last term bounded by \(C, h \), (5.17) shows the last term bounded by \(C, h \), \(|\lambda^{(i)} - \lambda^{(i)}| \), or if \(|x - \partial \Omega| \leq Ch \), (5.17) shows the last term bounded by \(C, h \), \(|\lambda^{(i)} - \lambda^{(i)}| \). Using (8.3), (5.16) and Schwarz's inequality bound the middle term on the right by \(||U^{(i)} - u^{(i)}||_h \), or, if \(|x - \partial \Omega| \leq Ch \), (5.17) bounds it by \(C, h \max_{\Omega} |U^{(i)} - u^{(i)}| \). In summary,

\[
\max_{\Omega} |U^{(i)} - u^{(i)}| \leq C_i \left[\max_{\Omega} |U^{(i)} - u^{(i)}| + |\lambda^{(i)} - \lambda^{(i)}| + h^4 \right].
\]

Finally, we use Parseval's identity and (8.9) to conclude that

\[
||U^{(i)} - u^{(i)}||^2_h = \sum_{f \in \Omega^{(i)}} |U^{(i)}(f) - u^{(i)}(f)|^2 + \sum_{f \neq f_1, \ldots, f_{n+m}} |(U^{(i)} - u^{(i)}, V^{(i)}_h)|^2,
\]

and by a straightforward computation

\[
(\lambda^{(i)} - \lambda^{(i)})(U^{(i)} - u^{(i)}, V^{(i)}_h)_h = (\kappa^{(i)} - \lambda^{(i)})U^{(i)}_h - \eta u^{(i)}_h + \tilde{H}_h^{(i)}, V^{(i)}_h)_h,
\]

where \(\tilde{H}_h^{(i)} \) is defined by

\[
\Delta_h \tilde{H}_h^{(i)}(x) = 0, \quad x \in \Omega^{(i)}, \quad \tilde{H}_h^{(i)}(x) = U^{(i)}_h(x) - u^{(i)}_h(x), \quad x \in \Omega^{(i)} \cup \Omega^{(3)}.
\]

It follows that

\[
||U^{(i)} - u^{(i)}||_h \leq C_i \left[\max_{\Omega^{(i)} \cup \Omega^{(3)}} |U^{(i)} - u^{(i)}| + |\lambda^{(i)} - \lambda^{(i)}| + h^4 \right].
\]

Combining (8.13), (8.15), (8.16), and (8.17) yields the proof of Theorem 8.1.

Let us observe some simple consequences of Theorem 8.1. Since the \(\lambda^{(i)} \) are real, we have

\[
|\text{Re} \lambda^{(i)} - \lambda^{(i)}| \leq Ch^4.
\]

Also, when \(\lambda^{(i)} \) is simple, \(\lambda^{(i)} \) will be real for \(h \) sufficiently small. This is because the matrix \([\lambda^{(i)}]_{x \in \Omega^{(i)}} \) is real. Thus, if \(\lambda^{(i)} \) were complex, its conjugate \([\lambda^{(i)}] \) would also be a distinct eigenvalue of \(\Delta_h \) converging to \(\lambda^{(i)} \). But this is impossible, since \([\lambda^{(i)}] \) must converge to some \(\lambda^{(i)} = \lambda^{(i)} \).

We normalized \(U^{(i)}_h \) by requiring \(||U^{(i)}||_h = 1 \). This determines \(U^{(i)}_h \) only up to a multiplicative constant of modulus 1. If we specify this constant by requiring that \((U^{(i)}_h, V^{(i)}_h)_h \geq 0 \), then when \(\lambda^{(i)} \) is simple, \(u^{(i)}(x) \) is a real multiple of \(u^{(i)}(x) \), as can be seen from (8.9).

Theorem 8.1 shows that \(U^{(i)}_h \) approximates to \(O(h^4) \) an eigenfunction \(u^{(i)}(x) \) which depends on \(h \). Properly normalized, however, \(U^{(i)}_h \) will approximate to \(O(h^4) \) an eigenfunction \(u^{(i)}(x) \) such that \(\int_\Omega |u^{(i)}(x)|^2 dx = 1 \), independently of \(h \). In particular, when \(\lambda^{(i)} \) is simple, \(U^{(i)}_h \) will approximate the unique normalized eigenfunction \(u^{(i)}(x) \). This normalization is

\[
h^2 \sum_{x \in \Omega} \alpha_h(y) |U^{(i)}_h(y)|^2 = 1,
\]

where \(\alpha_h \) is given in the appendix of [6]. For a proof, see [6, Corollary 6.2].

9. Forced Vibration Problems. Let us remark that all of the results of the previous sections hold for the problem

\[
\Delta u(x) + (q(x) + \lambda)u(x) = 0, \quad x \in \Omega, \quad u(x) = 0, \quad x \in \partial \Omega,
\]
where \(q \) is nonpositive and smooth on \(\Omega \), and for the discrete Green's function \(G_k \) defined by

\[
(\Delta_{h,z} + q(z))G_k(x, y) = -h^{-2} \delta(x, y), \quad x, y \in \Omega_k.
\]

The proofs require only that the additional term \(q \) be carried along throughout. We make this remark because we next wish to consider the problem

\[
(\Delta_{h,z} + r(z))u(x) = F(x), \quad x \in \Omega, \quad u(x) = 0, \quad x \in \partial \Omega,
\]

for \(F \) and \(r \) given smooth functions on \(\Omega \). Problem (9.3) is a forced vibration problem and an \(O(h^2) \) analogue of it was studied by Bramble in [1].

Let us rewrite (9.3) in the form

\[
\Delta_{h,k}u(x) + q(x)u(x) + \left(\sup_{g} r \right)u(x) = F(x), \quad x \in \Omega, \quad u(x) = 0, \quad x \in \partial \Omega,
\]

where \(q(x) = r(x) - \sup_{g} r \leq 0 \) on \(\Omega \). A unique solution \(u \) of (9.3) or (9.4) exists if and only if \(\sup_{g} r \) is not an eigenvalue of the operator \(\Delta + q \). Now, we consider the difference approximation

\[
\Delta_{h,k}U_h(x) + r(x)U_h(x) = F(x), \quad x \in \Omega_k,
\]

where \(\Delta_{h,k} \) is the difference operator defined in Section 2. We prove:

Theorem 9.1. If (9.3) has a unique solution \(u \in C^0(\Omega) \), there are constants \(C, h_0 \) such that for \(h < h_0 \), (9.5) has a unique solution \(U_h \) for which

\[
\max_{\Omega_h} |U_h - u| < C h^4.
\]

Proof. Let \(G_k \) be the discrete Green's function defined in (9.2). Then, for \(x \in \Omega_k \),

\[
|U_h(x) - u(x)| = h^2 \sum_{y \in \Omega_k} G_k(x, y)\left| \Delta_{h,k}u(y) + q(y)u(y) - \Delta_{h,k}U_h(y) - q(y)U_h(y) \right|
\]

\[
\leq \sup_{y \in \Omega_k} |q| h^2 \sum_{y \in \Omega_k} |G_k(x, y)| \left| U_h(y) - u(y) \right| + h^2 \sum_{y \in \Omega_k} |G_k(x, y)| \left| r(x)u(y) \right|.
\]

Therefore, using (5.13) and (5.14) for \(G_k \) of (9.2) and (2.5),

\[
|U_h(x) - u(x)| \leq C \left[h^2 \sum_{y \in \Omega_k} |G_k(x, y)| \left| U_h(y) - u(y) \right| + h^4 \right].
\]

Employing (5.17), this yields

\[
\max_{\Omega_h} \left| U_h - u \right| \leq C \left[h \max_{\Omega_h} \left| U_h - u \right| + h^4 \right],
\]

while (5.16) and Schwarz's inequality yield

\[
\max_{\Omega_h} \left| U_h - u \right| \leq C \left[\left| U_h - u \right| \| u \|_1 + h^4 \right].
\]

From (9.7) and (9.8), we see

\[
\left| U_h - u \right| \| u \|_1 \leq C \left[\| U_h - u \|_1 + h^4 \right].
\]
which implies

\[(9.9) \quad ||U_h - u||_h \leq C(||U_h - u||^*_h + h^4).\]

Finally, we complete the proof by using Parseval’s identity to estimate

\[(9.10) \quad ||U_h - u||^*_h = \left[\sum |\langle U_h - u, V_h^{(i)} \rangle_h^*|^2 \right]^{1/2},\]

where \(V_h^{(i)}\) is the eigenvector associated with \(\mu_h^{(i)}\) in the symmetric problem

\[\Delta_h V_h^{(i)}(x) + (q(x) + \mu_h^{(i)} V_h^{(i)}(x) = 0, \quad x \in \Omega', \quad V_h^{(i)}(x) = 0, \quad x \in \Omega_h^{(2)} \cup \Omega_h^{(3)}\].

Define \(H_h\) by

\[\Delta_h H_h(x) + q(x)H_h(x) = 0, \quad x \in \Omega', \quad H_h(x) = U_h(x) - u(x), \quad x \in \Omega_h^{(2)} \cup \Omega_h^{(3)}\].

From (5.21), we have

\[\max \{H_h\} \leq C \max \{|U_h - u|\},\]

or, employing (9.7), (9.8), (9.9),

\[(9.11) \quad \max \{H_h\} \leq C[h ||U_h - u||^*_h + h^4].\]

Then, we have

\[
\mu_h^{(i)}\langle U_h - u, V_h^{(i)} \rangle_h^* = \langle H_h + u - U_h, (\Delta_h + q)V_h^{(i)} \rangle_h + \mu_h^{(i)}\langle H_h, V_h^{(i)} \rangle_h^*
\]

\[= \langle (\Delta_h + q)(H_h + u - U_h), V_h^{(i)} \rangle_h + \mu_h^{(i)}\langle H_h, V_h^{(i)} \rangle_h^*
\]

\[= (\sup r)(U_h - u, V_h^{(i)} \rangle_h^* - \langle r, V_h^{(i)} \rangle_h^* + \mu_h^{(i)}\langle H_h, V_h^{(i)} \rangle_h^*\].

Now, since \(\text{sup } r\) is not an eigenvalue \(\lambda^{(i)}\) of \(\Delta + q\) and \(\mu_h^{(i)} \to \lambda^{(i)}\) as \(h \to 0\), there are constants \(C, h_0\) such that for \(h < h_0\),

\[\max \{|\mu_h^{(i)} - \text{sup } r|^{-1} < C, \quad \max \{|\mu_h^{(i)}/|\mu_h^{(i)} - \text{sup } r| < C,\]

and so

\[|\langle U_h - u, V_h^{(i)} \rangle_h^*| \leq C[|\langle r, V_h^{(i)} \rangle_h^*| + |\langle H_h, V_h^{(i)} \rangle_h^*|].\]

Using this in (9.10), we see that

\[||U_h - u||^*_h \leq C(||r, u||_h^* + ||H_h||_h^*) \leq C[h^4 + h ||U_h - u||^*_h],\]

by (9.11), from which it follows that

\[||U_h - u||^*_h \leq C h^4,\]

completing the proof.

Let us remark that by employing the results of [6], the above technique of proof will show that a unique solution of the forced vibration problem:

\[(9.12) \quad \sum \frac{\partial^2 u(x)}{\partial \alpha \partial \beta} \left(u_i(\alpha) \frac{\partial u(\alpha)}{\partial \alpha} \right) ; \quad r(\alpha)u(\alpha) = I(\alpha), \quad x \in \Omega',
\]

\[u(\alpha) = 0, \quad x \in \partial \Omega,\]
can be approximated to $O(h^2)$ by using the symmetric difference scheme given in [6] at the beginning of Section 7.

Applied Physics Laboratory
The Johns Hopkins University
Silver Spring, Maryland 20910

