Difference analogues of quasilinear elliptic Dirichlet problems with mixed derivatives
Author:
Robert S. Stepleman
Journal:
Math. Comp. 25 (1971), 257269
MSC:
Primary 65N10
MathSciNet review:
0303756
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: In this paper we consider a class of difference approximations to the Dirichlet problem for secondorder quasilinear elliptic operators with mixed derivative terms. The main result is that for this class of discretizations and bounded g (the righthand side) a solution to the difference equations exists. We also explicitly exhibit a discretization of this type for a class of operators.
 [1]
Lipman
Bers, On mildly nonlinear partial difference equations of elliptic
type, J. Research Nat. Bur. Standards 51 (1953),
229–236. MR 0064291
(16,260d)
 [2]
J.
H. Bramble and B.
E. Hubbard, A theorem on error estimation for finite difference
analogues of the Dirichlet problem for elliptic equations,
Contributions to Differential Equations 2 (1963),
319–340. MR 0152134
(27 #2114)
 [3]
Lothar
Collatz, Numerische Behandlung von Differentialgleichungen,
Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen
mit besonderer Berücksichtigung der Anwendungsgebiete. Band LX,
SpringerVerlag, Berlin, Göttingen, Heidelberg, 1951 (German). MR 0043563
(13,285f)
 [4]
T. Frank, Error Bounds on Numerical Solutions of Dirichlet Problems for QuasiLinear Elliptic Equations, Thesis, University of Texas, Austin, Tex., 1967.
 [5]
G.
T. McAllister, Some nonlinear elliptic partial differential
equations and difference equations, J. Soc. Indust. Appl. Math.
12 (1964), 772–777. MR 0179958
(31 #4195)
 [6]
G.
T. McAllister, Quasilinear uniformly elliptic partial differential
equations and difference equations, SIAM J. Numer. Anal.
3 (1966), no. 1, 13–33. MR 0202342
(34 #2213)
 [7]
T.
S. Motzkin and W.
Wasow, On the approximation of linear elliptic differential
equations by difference equations with positive coefficients, J. Math.
Physics 31 (1953), 253–259. MR 0052895
(14,693i)
 [8]
R. Stepleman, Finite Dimensional Analogues of Variational and QuasiLinear Elliptic Dirichlet Problems, Thesis, Technical Report #6988, Computer Science Center, University of Maryland, College Park, Md., 1969.
 [9]
Richard
S. Varga, Matrix iterative analysis, PrenticeHall, Inc.,
Englewood Cliffs, N.J., 1962. MR 0158502
(28 #1725)
 [1]
 L. Bers, "On mildly nonlinear partial differential equations of elliptic type," J. Res. Nat. Bur. Standards Sect. B, v. 5, 1963, pp. 229236. MR 0064291 (16:260d)
 [2]
 J. Bramble & B. Hubbard, "A theorem on error estimation for finite difference analogues of the Dirichlet problem for elliptic equations," Contributions to Differential Equations, v. 2, 1963, pp. 319340. MR 27 #2114. MR 0152134 (27:2114)
 [3]
 L. Collatz, Numerische Behandlung von Differentialgleichungen, Die Grundlehren der math. Wissenschaften, Band 60, SpringerVerlag, Berlin, 1951; English transl., SpringerVerlag, Berlin, 1960. MR 13, 285; MR 22 #322. MR 0043563 (13:285f)
 [4]
 T. Frank, Error Bounds on Numerical Solutions of Dirichlet Problems for QuasiLinear Elliptic Equations, Thesis, University of Texas, Austin, Tex., 1967.
 [5]
 G. McAllister, "Some nonlinear elliptic partial differential equations and difference equations," J. Soc. Indust. Appl. Math., v. 12, 1964, pp. 772777. MR 31 #4195. MR 0179958 (31:4195)
 [6]
 G. McAllister, "Quasilinear uniformly elliptic partial differential equations and difference equations," Siam J. Numer. Anal., v. 3, 1966, no. 1, pp. 1333. MR 34 #2213. MR 0202342 (34:2213)
 [7]
 T. Motzkin & W. Wasow, "On the approximation of linear elliptic differential equations by difference equations with positive coefficients," J. Mathematical Phys., v. 31, 1953, pp. 253259. MR 14, 693. MR 0052895 (14:693i)
 [8]
 R. Stepleman, Finite Dimensional Analogues of Variational and QuasiLinear Elliptic Dirichlet Problems, Thesis, Technical Report #6988, Computer Science Center, University of Maryland, College Park, Md., 1969.
 [9]
 R. S. Varga, Matrix Iterative Analysis, PrenticeHall, Englewood Cliffs, N. J., 1962. MR 28 #1725. MR 0158502 (28:1725)
Similar Articles
Retrieve articles in Mathematics of Computation
with MSC:
65N10
Retrieve articles in all journals
with MSC:
65N10
Additional Information
DOI:
http://dx.doi.org/10.1090/S00255718197103037561
PII:
S 00255718(1971)03037561
Keywords:
Difference analogues,
elliptic,
mixed derivatives
Article copyright:
© Copyright 1971
American Mathematical Society
