Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Error bounds for compound quadrature of weakly singular integrals


Authors: Alan Feldstein and Richard K. Miller
Journal: Math. Comp. 25 (1971), 505-520
MSC: Primary 65D30
DOI: https://doi.org/10.1090/S0025-5718-1971-0297127-4
MathSciNet review: 0297127
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: This paper studies the convergence of numerical quadratures of singular integrands. The singularities are ignored in the sense that whenever a singularity occurs the integrand is redefined to be zero. Several convergence theorems are proved under the assumption that the integrand can be dominated near each singularity by a monotone, integrable function.


References [Enhancements On Off] (What's this?)

  • [1] A. Sard, Linear Approximation, Math. Surveys, no. 9, Amer. Math. Soc., Providence, R.I., 1963. MR 28 #1429. MR 0158203 (28:1429)
  • [2] A. H. Stroud, ``Estimating quadrature errors for functions with low continuity,'' SIAM J. Numer. Anal., v. 3, 1966, pp. 420-424. MR 35 #6368. MR 0215528 (35:6368)
  • [3] P. J. Davis & P. Rabinowitz, ``Ignoring the singularity in approximate integration,'' J. Soc. Indust. Appl. Math. Ser. B Numer. Anal., v. 2, 1965, pp. 367-383. MR 33 #3459. MR 0195256 (33:3459)
  • [4] P. Rabinowitz, ``Gaussian integration in the presence of a singularity,'' SIAM J. Numer. Anal., v. 4, 1967, pp. 191-201. MR 35 #3881. MR 0213016 (35:3881)
  • [5] W. Gautschi, ``Numerical quadrature in the presence of a singularity,'' SIAM J. Numer. Anal., v. 4, 1967, pp. 357-362. MR 36 #1103. MR 0218014 (36:1103)
  • [6] L. Fox, ``Romberg integration for a class of singular integrands,'' Comput. J., v. 10, 1967, pp. 87-93. MR 35 #3878. MR 0213013 (35:3878)
  • [7] P. J. Davis & P. Rabinowitz, Numerical Integration, Blaisdell, Waltham, Mass., 1967. MR 35 #2482. MR 0211604 (35:2482)
  • [8] E. Isaacson & H. B. Keller, Analysis of Numerical Methods, Wiley, New York, 1966. MR 34 #924. MR 0201039 (34:924)
  • [9] K. E. Atkinson, ``The numerical solution of Fredholm integral equations of the second kind,'' SIAM J. Numer. Anal., v. 4, 1967, pp. 337-348. MR 36 #7358. MR 0224314 (36:7358)
  • [10] D. G. Schweikert, Numerical Parametric Integration of Continuous Functions with a Singular Derivative, Proc. Twenty-Third National Conference of A.C.M., Brandon Systems Press, Princeton, N.J., 1968.
  • [11] R. K. Miller, ``On ignoring the singularity in numerical quadrature,'' Math. Comp. (Submitted.) MR 0301901 (46:1056)
  • [12] A. Erdélyi (Editor), Higher Transcendental Functions. Vol. 2, McGraw-Hill, New York, 1953. MR 15, 419.

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 65D30

Retrieve articles in all journals with MSC: 65D30


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1971-0297127-4
Keywords: Quadrature, singular integrals, ignoring the singularity, avoiding the singularity, error bounds, convolution integrals, weakly singular, order of convergence
Article copyright: © Copyright 1971 American Mathematical Society

American Mathematical Society