Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)



Comparing error estimators for Runge-Kutta methods

Authors: L. F. Shampine and H. A. Watts
Journal: Math. Comp. 25 (1971), 445-455
MSC: Primary 65L99
MathSciNet review: 0297138
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A way is proposed to compare local error estimators. This is applied to the major estimators for fourth-order Runge-Kutta procedures. An estimator which leads to a production code 18

References [Enhancements On Off] (What's this?)

  • [1] E. L. Ince, Ordinary Differential Equations, Dover, New York, 1956. MR 0010757 (6:65f)
  • [2] J. Christiansen, ``Numerical solution of ordinary simultaneous differential equations of the 1st order using a method for automatic step change,'' Numer. Math., v. 14, 1970, pp. 317-324. MR 1553973
  • [3] J. A. Zonneveld, Automatic Numerical Integration, Math. Centre Tracts, no. 8, Mathematische Centrum, Amsterdam, 1964. MR 30 #1612. MR 0171381 (30:1612)
  • [4] T. E. Hull, The Numerical Integration of Ordinary Differential Equations, Proc. IFIP Congress 68, North-Holland, Amsterdam, 1968, pp. 131-144.
  • [5] P. Henrici, Discrete Variable Methods In Ordinary Differential Equations, Wiley, New York, 1962. MR 24 #B1772. MR 0135729 (24:B1772)
  • [6] F. Ceschino & J. Kuntzmann, Numerical Solution of Initial Value Problems, Dunod, Paris, 1963; English transl., Prentice-Hall, Englewood Cliffs, N.J., 1966. MR 33 #3465. MR 0195262 (33:3465)
  • [7] H. Morel, ``Evaluation de l'erreur sur un pas dans la méthode de Runge-Kutta,'' C. R. Acad. Sci Paris, v. 243, 1956, pp. 1999-2002. MR 18, 603. MR 0082739 (18:603c)
  • [8] R. England, ``Error estimates for Runge-Kutta type solutions to systems of ordinary differential equations,'' Comput. J., v. 12, 1969/70, pp. 166-170. MR 39 #3708. MR 0242377 (39:3708)
  • [9] R. E. Jones, RUNKUT-Runge Kutta Integrator of Systems of First Order Ordinary Differential Equations, Report #SC-M-70-724, Sandia Laboratories, Albuquerque, New Mexico, 1970.
  • [10] L. F. Shampine & H. A. Watts, Efficient Runge-Kutta Codes, Report #SC-RR-70-615, Sandia Laboratories, Albuquerque, New Mexico, 1970. (This report is available from the authors or Sandia Laboratory, Division 3428.)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 65L99

Retrieve articles in all journals with MSC: 65L99

Additional Information

Keywords: Local error, error estimators, Runge-Kutta methods, step size adjustment, solution of differential equations
Article copyright: © Copyright 1971 American Mathematical Society

American Mathematical Society