Stability of bounded solutions of linear functional equations

Author:
Joel N. Franklin

Journal:
Math. Comp. **25** (1971), 413-424

MSC:
Primary 47A50; Secondary 35R25

DOI:
https://doi.org/10.1090/S0025-5718-1971-0380461-7

MathSciNet review:
0380461

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The weak sequential compactness of reflexive Banach spaces is used to explain the fact that certain ill-posed, linear problems become well-posed if the solutions are required to satisfy a prescribed bound. Applications are made to the computability of solutions of ill-posed problems associated with elliptic and parabolic partial differential equations.

**[1]**J. Hadamard,*Lectures on Cauchy's Problem in Linear Partial Differential Equations*, Yale Univ. Press, New Haven, Conn., 1923.**[2]**F. John, ``Numerical solution of the equation of heat conduction for preceding times,''*Ann. Mat. Pura Appl.*(4), v. 40, 1955, pp. 129-142. MR**19**, 323. MR**0087224 (19:323e)****[3]**F. John,*Numerical Solution of Problems which are not Well Posed in the Sense of Hadamard*, Proc. Sympos. Numerical Treatment of Partial Differential Equations with Real Characteristics (Rome, 1959), Libreria Eredi Virgilio Veschi, Rome, 1959, pp. 103-116. MR**21**#6704. MR**0107983 (21:6704)****[4]**F. John, ``Continuous dependence on data for solutions of partial differential equations with a prescribed bound,''*Comm. Pure Appl. Math.*, v. 13, 1960, pp. 551-585. MR**24**#A317. MR**0130456 (24:A317)****[5]**L. E. Payne,*On Some Nonwell Posed Problems for Partial Differential Equations*, Proc. Adv. Sympos. Numerical Solutions of Nonlinear Differential Equations (Madison, Wis., 1966), Wiley, New York, 1966, pp. 239-263. MR**35**#4606. MR**0213749 (35:4606)****[6]**R. D. Richtmyer,*Difference Methods for Initial-Value Problems*, Interscience Tracts in Pure and Appl. Math., Tract 4, Interscience, New York, 1957. MR**20**#438. MR**0093918 (20:438)****[7]**F. Riesz & B. Sz.-Nagy,*Lecons d'Analyse Fonctionnelle*, Akad. Kiadó, Budapest, 1953; English transl., Ungar, New York, 1955. MR**15**, 132; MR**17**, 175. MR**0056821 (15:132d)****[8]**P. R. Garabedian,*Partial Differential Equations*, Wiley, New York, 1964. MR**28**#5247. MR**0162045 (28:5247)****[9]**J. R. Gannon,*Some Numerical Results for the Solution of the Heat Equation Backwards in Time*, Proc. Adv. Sympos. Numerical Solutions of Nonlinear Differential Equations (Madison, Wis., 1966), Wiley, New York, 1966, pp. 21-54. MR**34**#7037. MR**0207221 (34:7037)****[10]**J. Douglas, Jr.,*Approximate Continuation of Harmonic and Parabolic Functions*, Proc. Sympos. Numerical Solution of Partial Differential Equations (Univ. of Maryland, 1965), Academic Press, New York, 1966, pp. 353-364. MR**34**#2206. MR**0202333 (34:2206)****[11]**R. Saylor, ``Numerical elliptic continuation,''*SIAM J. Numer. Anal.*, v. 4, 1967, pp. 575-581. MR**36**#5513. MR**0222461 (36:5513)**

Retrieve articles in *Mathematics of Computation*
with MSC:
47A50,
35R25

Retrieve articles in all journals with MSC: 47A50, 35R25

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1971-0380461-7

Keywords:
Well-posed,
ill-posed,
continuous dependence on data,
stability,
backwards heat-equation,
final-value problem,
elliptic continuation

Article copyright:
© Copyright 1971
American Mathematical Society