Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

A numerical determination of the modulus of doubly connected domains by using the Bergman curvature


Author: J. Burbea
Journal: Math. Comp. 25 (1971), 743-756
MSC: Primary 30.40; Secondary 65.00
DOI: https://doi.org/10.1090/S0025-5718-1971-0289758-2
MathSciNet review: 0289758
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The moduli of doubly connected domains are computed by means of the Bergman curvature associated with the Bergman function of the domain. The moduli of nonconcentric annuli, elliptic rings, confocal elliptic rings, squares inside circles and squares inside squares are determined by this method.


References [Enhancements On Off] (What's this?)

  • [1] S. Bergman, The Kernel Function and Conformal Mapping, 2nd ed., Math. Surveys, no. 5, Amer. Math. Soc., Providence, R.I., 1970. MR 0507701 (58:22502)
  • [2] S. Bergman & B. Chalmers, ``A procedure for conformal mapping of triply-connected domains,'' Math. Comp., v. 21, 1967, pp. 527-542. MR 37 #4243a. MR 0228663 (37:4243a)
  • [3] J. Burbea, ``A procedure for conformal maps of simply connected domains by using the Bergman function,'' Math. Comp., v. 24, 1970, pp. 821-829. MR 0277138 (43:2875)
  • [4] J. Burbea, ``On the Gaussian curvature related to the Szegö metric.'' (To appear.)
  • [5] P. Davis & P. Rabinowitz, ``Abscissas and weights for Gaussian quadratures of high order,'' J. Res. Nat. Bur. Standards, Sect. B, v. 56, 1965, pp. 35-37. MR 0076463 (17:902g)
  • [6] B. Epstein, Orthogonal Families of Analytic Functions, Macmillan, New York, 1965. MR 31 #4916. MR 0180685 (31:4916)
  • [7] D. Gaier, Konstruktive Methoden der konformen Abbildung, Springer Tracts in Natural Philosophy, vol. 3, Springer-Verlag, Berlin, 1964. MR 33 #7507. MR 0199360 (33:7507)
  • [8] J. Kiefer, ``Sequential minimax search for a maximum,'' Proc. Amer. Math. Soc., v. 4, 1953, pp. 502-506. MR 14, 1103. MR 0055639 (14:1103h)
  • [9] G. Opfer, ``Die Bestimmung des Moduls zweifach zusammenhängender Gebiete mit Hilfe von Differenzenverfahren,'' Arch. Rational Mech. Anal., v. 32, 1969, pp. 281-297. MR 38 #4662. MR 0236366 (38:4662)
  • [10] M. C. Pike & J. Pixner, ``Fibonacci search,'' Comput. Bull., v. 8, 1965, p. 147.
  • [11] P. Rabinowitz, ``Numerical experiments in conformal mapping by the method of orthonormal polynomials,'' J. Assoc. Comput. Mach., v. 13, 1966, pp. 296-303.
  • [12] K. Zarankiewicz, ``Über ein numerisches Verfahren zur konformen Abbildung zweifach zusammenhängender Gebiete,'' Z. Angew. Math. Mech., v. 14, 1934, pp. 97-104.

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 30.40, 65.00

Retrieve articles in all journals with MSC: 30.40, 65.00


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1971-0289758-2
Keywords: Bergman curvature, Bergman kernel, Bergman metric, conformal invariance, modulus, reproducing kernel, Szegö kernel, theorema egregium
Article copyright: © Copyright 1971 American Mathematical Society

American Mathematical Society