A Finite-Difference Method for Parabolic Differential Equations with Mixed Derivatives

By Jan Krzysztof Kowalski

Abstract. In a recent paper, P. Jamet constructed a positive difference operator for a parabolic differential operator whose coefficients are singular on the boundary, and proved the existence of a unique solution of the boundary-value problem for the differential equation using discrete barriers. In the present paper, Jamet's results are extended to the parabolic operator with mixed derivatives.

I. Introduction. Let \(G \) be a bounded domain in \(\mathbb{R}^{n+1} \) and \(P = (x_1, \cdots, x_n, t) \) denote an element of \(G \). Let \(L \) be a differential operator of the form

\[
Lu(P) = \sum_{i,j=1}^{n} a_{ij}(P) \frac{\partial^2 u}{\partial x_i \partial x_j}(P) \\
+ \sum_{i=1}^{n} b_i(P) \frac{\partial u}{\partial x_i}(P) - c(P)u(P) - d(P)\frac{\partial u}{\partial t}(P).
\]

The coefficients \(a_{ij} = a_{ji}, b_i, c \) and \(d \) are smooth functions in the interior of \(G \), but they may be singular as \(P \) approaches the boundary \(\partial G \) of \(G \). The existence of the solution and the convergence of its approximations depend on the type of the singularities. We assume that the operator \(L \) is parabolic, i.e.

\[
\forall P \in G \forall (\xi_1, \cdots, \xi_n) \neq (0, \cdots, 0) \quad \sum_{i,j=1}^{n} a_{ij}(P)\xi_i \xi_j > 0,
\]

\[
c(P) \geq 0, \quad d(P) > 0.
\]

Let \(\Gamma_1 \) be a nonempty subset of \(\partial G \); \(\Gamma_2 = \partial G - \Gamma_1 \); \(f \) be a bounded function defined on \(\bar{G} \) which is smooth in the interior of \(\bar{G} \), and let \(g \in C(\bar{G}) \). We consider the boundary-value problem

\[
(1.3) \quad Lu(P) = f(P), \quad P \in G, \quad u(P) = g(P), \quad P \in \Gamma_1.
\]

We want the solution \(u \) to be continuous in \(G \cup \Gamma_1 \), bounded in \(G \) and of the class \(C^{2}(G) \).

In [3], P. Jamet investigated problem (1.3), however, without mixed derivatives. In the present work, Jamet's fundamental theorem (Theorem 2.1) is applied to the problem with mixed derivatives.

II. Finite-Difference Operators of Positive Type. Let \(h = (h_1, \cdots, h_n, \tau) \) be a parameter, \(m_0 \)-integer, and for each \(h \),

\[
\text{Received January 18, 1971.}
\]

\text{AMS 1970 subject classifications. Primary 65N10, 65N05, Secondary 35K20.}

\text{Key words and phrases. Parabolic differential operator, boundary-value problem, mixed derivatives, positive difference operator, consistency of operators, convergence on the mesh, discrete barrier.}

Copyright © 1971, American Mathematical Society

675
\[\mathcal{G}_h = \{(x_1, \ldots, x_n, t) \in \mathcal{G}: x_i = m_i h_i, i = 1, \ldots, n; t = m_0 \tau\}. \]

Let \(G_h \) and \(\partial G_h \) be two complementary nonempty subsets of \(\mathcal{G}_h \). We assume that
\[
\max_{P \in \partial G_h} d(P, \partial G) \to 0 \quad \text{as} \quad h \to 0.
\]
(We denote by \(d(B, B') \) the distance between two sets \(B \) and \(B' \) in \(\mathbb{R}^{n+1} \).)

To each point \(P \in G_h \) we associate a set \(\mathfrak{N}(P) \subset \mathcal{G}_h \) which satisfies
\[
P \in \mathfrak{N}(P) \quad \text{and} \quad \max_{P' \in \mathfrak{N}(P)} \max_{P' \in \mathfrak{N}(P)} d(P, P') \to 0 \quad \text{as} \quad h \to 0,
\]
and which is called the mesh-neighborhood of \(P \) in \(\mathcal{G}_h \).

We say that \(\mathcal{G}_h \) is simply connected, if \(\forall P \in G_h \) there exists a sequence of points \(P_0, \ldots, P_k \) such that \(P_0 = P; P_i \in G_h, 0 \leq i \leq k - 1; P_k \in \partial G_h \) and \(P_{i+1} \in \mathfrak{N}(P_i) \) for \(0 \leq i \leq k - 1 \).

Let \(v \) be a function defined on \(\mathcal{G}_h \). We define the finite-difference operator
\[
L_h v(P) = \sum_{P' \in \mathfrak{N}(P)} (A(P, P') v(P')).
\]

If, for all \(P \in G_h \),
\[
A(P, P') > 0 \quad \text{for} \quad P' \neq P; \quad E(P) = \sum_{P' \in \mathfrak{N}(P)} A(P, P') \leq 0,
\]
then the operator \(L_h \) is said to be "of positive type" or "positive".

The following maximum principle holds:

Let \(L_h \) be of positive type, \(\mathcal{G}_h \) be connected and \(v \) be any function defined on \(\mathcal{G}_h \) and such that \(\forall P \in G_h, L_h v(P) \geq 0 \); then
\[
\max_{P \in \mathcal{G}_h} v(P) \leq \max_{P \in \mathcal{G}_h} \left(0, \max_{P \in \mathcal{G}_h} v(P) \right).
\]

Now, we introduce some notations and definitions. For any given subdomain \(G' \) of \(G \), we define:

\(\mathcal{G}'_h = \mathcal{G}_h \cap \mathcal{G}' \), \(G'_h = \{ P \in G_h \cap \mathcal{G}': \mathfrak{N}(P) \subset \mathcal{G}'_h \} \), \(\partial G'_h = \mathcal{G}'_h - G'_h \).

Definition 2.1. Let \(G' \subset G \). We say that \(L_h \) is consistent with \(L \) in the norm \(C_0(G') \), if
\[
\forall \varphi \in C_0(G'), \quad \max_{P \in \mathcal{G}'_h} |L_h \varphi(P) - L \varphi(P)| \to 0 \quad \text{as} \quad h \to 0.
\]

Definition 2.2. Let \(G' \subset G, H \) be any set of parameters \(h \), \(\{ \mathcal{G}_h \}_{h \in H} \) be a family of nets and \(\mathcal{S} = \{ \rho(P, h) \} \) be a family of mesh-functions defined for each \(h \) on \(\mathcal{G}_h \in \{ \mathcal{G}_h \} \). We say that the family \(\mathcal{S} \) is equicontinuous in \(G' \), if
\[
\forall \varepsilon > 0 \quad \exists \eta > 0 \quad \forall h \in H \quad \forall P, P' \in \mathcal{G}_h, \quad d(P, P') < \eta \Rightarrow |\rho(P, h) - \rho(P', h)| < \varepsilon.
\]

Definition 2.3. Let \(G' \subset G \). Let \(\{ \rho(P, h) \} \) be a family of mesh-functions defined on \(\mathcal{G}_h \in \{ \mathcal{G}_h \} \), and let \(u \) be a function defined on \(\mathcal{G}' \). We say that \(\rho(P, h) \) converges uniformly to \(u(P) \) on \(G' \), if
max \[v(P, h) - u(P) \rightarrow 0 \quad \text{as} \quad h \rightarrow 0. \]

Now, let us consider an infinite set \(H = \{ h \} \) of vectors \(h \) with zero as an accumulation point and the corresponding family \(\{ L_h \} \) of operators.

Definition 2.4 Let \(Q \in \partial G \). A function \(B(P, Q) \) is a strong (local) discrete barrier at the point \(Q \) relative to the family \(\{ L_h \} \), if there exists a neighborhood \(N_Q \) of the point \(Q \) in the relative topology of \(\hat{G} \) such that:

(2.3a) \(B(\cdot, Q) \in C(N_Q) \),
(2.3b) \(B(Q, Q) = 0, B(P, Q) < 0 \quad \forall \ P \in N_Q - \{ Q \}, \)
(2.3c) \(\forall P \in N_{Q_h} L_h B(P, Q) + E(P) \geq 1 \) for \(h \) small enough.

Now, we consider the following system of linear equations

(2.4) \[L_h v(P, h) = f(P), \quad P \in G_h, \quad v(P, h) = g(P), \quad P \in \partial G_h. \]

It follows from the maximum principle that, if \(L_h \) is positive and \(\hat{G}_h \) is simply connected, then the system (2.3) has a unique solution \(v(P, h) \).

We shall assume that \(L_h \) is positive and \(\hat{G}_h \) is connected. With these assumptions, P. Jamet proved the following theorem, [3].

Theorem 2.1. Let \(\bar{\Sigma} = \{ \sigma(P, h) \} \) be the family of the solutions of (2.3) for all \(h \) small enough. Let us assume

(i) There exists a function \(\varphi \in C(\hat{G}) \) such that \(L_h \varphi(P) \geq 1, \forall P \in G_h \) and for all \(h \).

(ii) For any \(G' \subset \hat{G}' \subset G \) and for any sequence \(\{ v(P, h) \}; h \rightarrow 0 \} \subset \bar{\Sigma} \), there exists a subsequence which converges uniformly on \(G' \) to a solution of the equation \(Lu = f \).

(iii) At each point \(Q \in \Gamma_1 \), there exists a strong discrete barrier relative to the family \(\{ L_h \} \).

Then, problem (1.3) has at least one solution \(u(P) \). Moreover, if this solution is unique, \(v(P, h) \) converges to \(u(P) \) as \(h \rightarrow 0 \), uniformly in \(\hat{G} - N(\Gamma_2) \), where \(N(\Gamma_2) \) is an arbitrary neighborhood of \(\Gamma_2 \).

In the subsequent sections, we investigate when the assumptions of Theorem 2.1 are satisfied.

III. Construction of the Finite-Difference Schemes for the Problem with Mixed Derivatives. Let \(h, \tau \) be positive numbers and \(\hat{G}_h \) be the rectangular net with the step \(h \) for the space variables \((x_1, \ldots, x_n) \) and \(\tau \) for the time \(t \). At each point \(P \in \hat{G}_h \) we define a vector of positive integers \([m_i]_{i=1,\ldots,n} \).

At the point \(P_0 \in \hat{G}_h \), we define a set \(\mathcal{A}_h(P_0) \)

\[\mathcal{A}_h(P_0) = \bigcup_{i=1}^n \{ P = P_0 + e_i m_i h, P = P_0 - e_i m_i h \} \]

\[\cup \bigcup_{i=1}^n \bigcup_{j=i+1}^n \{ P = P_0 + e_i m_i h + e_i m_i h \cdot \text{sgn} \ a_{ij}(P_0), \]

\[P = P_0 - e_i m_i h \cdot \text{sgn} \ a_{ij}(P_0) - e_i m_i h \}

\[\cup \{ P_0, P_0 - e_{n+1} \tau \}, \]

where \(e_i \) is the versor of the \(x_i \)-axis \((1 \leq i \leq n) \) in \(R^{n+1} \), and \(e_{n+1} \) the versor of \(t \)-axis.
By \(\mathfrak{S}_0(P_0) \) we denote the sum of all segments joining the point \(P_0 \) to each of the points of \(\mathfrak{S}_0(P_0) \). Let

\[
G_0^0 = \{ P \in \tilde{G}_h : \mathfrak{S}_0(P) \subseteq \tilde{G}_h \}, \quad M_i = \max_{P \in G_0^0} m_i(P),
\]

(3.1) \(\Gamma_1^h = \{ P_0 = (x_1^0, \ldots, x_n^0, t^0) \in \tilde{G}_h - G_0^0 \} : \min_{P = (x_1, \ldots, x_n, t) \in \Gamma} |t - t^0| < \tau \) and \(\forall i \min_{P \in \Gamma} |x_i - x_i^0| < \eta M_i \).

We choose the sets \(G_h \) and \(\partial G_h \) arbitrarily, provided \(\Gamma_1^h \subset \partial G_h \) and \(G_0^0 \subset G_h \). At each point \(P \in G_0^0 \) we take \(\mathfrak{S}(P) = \mathfrak{S}_0(P) \), and at the points \(P \in G - G_0 \) we define \(\mathfrak{S}(P) \) arbitarily, provided \(\mathfrak{S}(P) \cap G_0^0 \neq \emptyset \); this choice guarantees the connectedness of \(\tilde{G}_h \) for \(h \) small. At each point \(P \in G_h - G_0^0 \) we define the operator \(L_h \) arbitrarily, provided conditions (2.2) are satisfied at that point. For \(P \in G_0^0 \) we take

\[
L_h \psi(P) = \sum_{i=1}^n \alpha_i(P) \psi_{i,i} + \sum_{i=1}^{n-1} \sum_{i+1}^n \alpha_{i,i+1} \psi_{i+1,i} - \sum_{i=1}^n \sum_{j=i+1}^n a_{i,j} \psi_{i,j}
\]

(3.2) \(+ \sum_{i=1}^n \beta_i(P)(v_{i,i} + v_{i,i})/2 - c(P) \psi - d(P) \psi_i \),

where

\[
v_{i,i}(P) = [v(P + e_{i,m_i}h) - v(P)]/m_i h, \quad v_{i,i}(P) = [v(P) - v(P - e_{i,m_i}h)]/m_i h, \quad v_{i,i} = (v_{i,i})_{i,1};
\]

\[
v_{i,i+1}(P) = [v(P + e_{i,m_i}h + e_{i+1,m_{i+1}}h) - 2v(P) + v(P - e_{i,m_i}h - e_{i+1,m_{i+1}}h)]/h^2 m_i m_{i+1},
\]

\[
v_{i,i-1}(P) = [v(P + e_{i,m_i}h - e_{i-1,m_{i-1}}h) - 2v(P) + v(P - e_{i,m_i}h + e_{i-1,m_{i-1}}h)]/h^2 m_i m_{i-1},
\]

\[
v_i(P) = [v(P) - v(P - e_{n+1}h)]/\tau,
\]

\[
a_{i,j}(P) = |a_{i,j}(P) + |a_{i,j}(P)|1/2, \quad a_{i,j}(P) = a_{i,j}(P) - a_{i,j}^-(P), \quad i, j = 1, \ldots, n;
\]

and

(3.3) \(\alpha_i(P) = A_i(P) = a_{i,i}(P) - \sum_{i=1;i \neq i}^n \frac{m_i}{m_i} |a_{i,j}(P)|, \quad \beta_i(P) = b_i(P) \).

If the operator \(L_h \) is positive, then its coefficients satisfy the following system of inequalities

\[
A_i(P) - \frac{m_i h}{2} |b_i(P)| > 0.
\]

If \(m_i h |b_i(P)| = o(A_i(P)) \) for \(P \) near the boundary \(\partial G \), then the upper system is equivalent to the system

(3.4) \(a_{ij}(P) - \sum_{j=i;i \neq i}^n \frac{m_j}{m_i} |a_{ij}(P)| > 0 \).

Now, we shall prove the existence of the solution of system (3.4). Let \(B = [b_{ij}]_{i,j=1, \ldots, n} \) be an arbitrary matrix and assume that \(0 \leq k \leq n - 1 \); \(k < i, j \leq n \). We denote
PARABOLIC DIFFERENTIAL EQUATIONS

\[B^k = \begin{vmatrix} b_{11} & \cdots & b_{1k} \\ \vdots & \ddots & \vdots \\ b_{k1} & \cdots & b_{kk} \end{vmatrix}, \quad \quad B^*_{i,j} = \begin{vmatrix} b_{11} & \cdots & b_{1,k-1} & b_{1f} \\ \vdots & \ddots & \vdots & \vdots \\ b_{k-1,1} & \cdots & b_{k-1,k-1} & b_{k-1,i} \\ b_{k1} & \cdots & b_{k,k-1} & b_{kf} \end{vmatrix}, \]

where \(|B| = \det B \).

Let \(B^k(m, p) \) be the minor of \(B^k \) after striking out the \(m \)th column and \(p \)th row, let \(B^k(m) = B^k(m, k) \). We introduce the analogous notation for the minors of \(B^*_{i,j} \), \(B^k_{i,j} \) and \(B^*_{i,j} \).

Lemma 3.1. Using this notation, the following equality is valid:

\[B^k B^*_{i,j} - B^k_{i,j} B^k = B^k B^*_{i,j} = B^{k-1} B^*_{i,j} + 1. \]

Proof. We carry out the proof by induction. For \(l = 1 \) the formula (3.5) is valid (we take \(B^0 = 1 \)). Suppose that the theorem is true for \(l = k - 1 \), \(k \geq 1 \).

We compute the left and right side of the formula (3.5) for \(l = k \).

Left = \(B^k \left[\sum_{m=1}^{k-1} (-1)^{k+m} b_{im} B^k_{i,j}(m) + b_{ij} B^k_{i,j} \right] - B^k_{i,j} \left[\sum_{m=1}^{k-1} (-1)^{k+m} b_{im} B^k(m) + b_{ik} B^k_{i,j} \right] = \sum_{m=1}^{k-1} (-1)^{k+m} b_{im} [B^k B^*_{i,j}(m) - B^k(m) B^*_{i,j}] + b_{ij} B^k B^k_{i,j} - b_{ik} B^k_{i,j} B^k_{i,j}. \)

We compute now the term in square brackets, using the Laplace formula.

\[B^k B^*_{i,j}(m) - B^k(m) B^*_{i,j} = B^*_{i,j}(m) \left[\sum_{p=1}^{k-1} (-1)^{m+p} b_{pm} B^k(m, p) + (-1)^{m+k} b_{km} B^k(m) \right] - B^k(m) \left[\sum_{p=1}^{k-1} (-1)^{m+p} b_{pm} B^*_{i,j}(m, p) + (-1)^{m+k} B^*_{i,j}(m) \right] = \sum_{p=1}^{k-1} (-1)^{m+p} b_{pm} [B^k(m, p) B^*_{i,j}(m) - B^*_{i,j}(m, p) B^k(m)]. \]

We introduce a matrix \(C(m, p) = [c_{r,s}] \) with the elements:

\[
\begin{array}{cccc}
1 \leq r < p & 1 \leq r \leq k - 1 & r = i \\
1 \leq s < m & b_{rs} & b_{r+1,s} & b_{ps} \\
m \leq s \leq k - 1 & b_{r,s+1} & b_{r+1,s+1} & b_{p,s+1} \\
\end{array}
\]

Then
Using the inductive assumption we get
\[B^k_i(m)B^k_i(m, p) - B^k_i(m, p)B^k_i(m, p) = -B^{k-1}_i(m, p)B^{k+1}_i(m). \]

Hence,
\[
\begin{align*}
\text{Left} &= \sum_{m=1}^{k-1} (-1)^{k+m}b_{im} \sum_{p=1}^{k-1} (-1)^{m+p+1}b_{pm}B^{k-1}_i(m, p)B^{k+1}_i(m) \\
&+ b_{ii}B^k_iB^{k-1}_i - b_{ii}B^k_iB^{k-1}_i.
\end{align*}
\]

But
\[
\begin{align*}
\text{Right} &= B^{k+1}_i \left[\sum_{m=1}^{k-1} (-1)^{m+p+1}b_{im}B^{k+1}_i(m) - b_{ii}B^k_i + b_{ii}B^k_i \right] \\
&= \sum_{m=1}^{k-1} (-1)^{k+m+1}b_{im}B^{k+1}_i(m) \sum_{p=1}^{k-1} (-1)^{m+p}b_{pm}B^{k-1}_i(m, p) \\
&- b_{ii}B^{k-1}_iB^k_i + b_{ii}B^k_iB^{k-1}_i = \text{Left},
\end{align*}
\]
which concludes the proof of the lemma.

For each \(P \in G \) we set
\[
b_{ii}(P) = a_{ii}(P), \quad i = j,
\]
\[
= -|a_{ii}(P)|, \quad i \neq j.
\]

Theorem 3.1. If
\[
\exists \gamma > 0 \exists M > 0 \forall P \in G \forall (\xi_1, \cdots, \xi_n) \sum_{i, j=1}^{n} b_{ii}(P)\xi_i\xi_j \geq \gamma \sum_{i=1}^{n} \xi_i^2
\]
and \(|b_{ij}(P)| < M \),
then the system of inequalities (3.4) has an integer solution and \(M_i \) given by (3.1) are bounded.

Proof. Let \(P \) be a fixed point. We transform (3.4) to the form
\[
\sum_{i=1}^{n} b_{ii}\mu_i > 0, \quad \text{where } \mu_i = 1/m_i.
\]

For \(i = 2, 3, \cdots, n \), we multiply the first inequality by \(b_{ii} \) and the \(i \)th by \(b_{ii} \) and sum them. Using the inequalities \(b_{ii} > 0 \) and \(b_{ii} \leq 0 \) for \(i \neq j \), we get
\[
\sum_{i=2}^{n} \mu_i(b_{ii}b_{ii} - b_{ii}b_{ii}) > 0.
\]

Let \(b_{ii}^{(3)} = (b_{ii}b_{ii} - b_{ii}b_{ii})/b_{ii} \) and, for \(k = 2, 3, \cdots, n - 1 \) and \(i, j \geq k + 1 \), let \(b_{ii}^{(k+1)} = (b_{ii}^{(k)}b_{ii}^{(k)} - b_{ii}^{(k)}b_{ii}^{(k)})/b_{ii}^{(k)} \). Using Lemma 3.1 we deduce that
\[
b_{ii}^{(k+1)} = B_{ii}^{(k+1)} \left[\prod_{i=1}^{k} b_{ii}^{(1)} \right]^{-1}.
\]
For $k = 1$ formula (3.6) is true. Suppose that it is valid for $k = m - 1 ≥ 1$. Then

$$b_{i,j}^{(m+1)} = [B_{i,j}^{m} - B_{i,j}^{m-1}] \cdot \left[\prod_{i=1}^{m-1} b_{i,i}^{(1)} \right]^{-2} / b_{m,m}^{(m)} = B_{i,j}^{m-1} \cdot \left[\prod_{i=1}^{m-1} b_{i,i}^{(1)} \right]^{-2} / b_{m,m}^{(m)}$$

$$= \frac{b_{i,j}^{(m-1)}}{b_{m,m}^{(m)}} \cdot \left[\prod_{i=1}^{m-2} b_{i,i}^{(1)} \right]^{-2} \cdot B_{i,j}^{m+1} = \left[\prod_{i=1}^{m-1} b_{i,i}^{(1)} \right]^{-1} B_{i,j}^{m+1},$$

therefore the formula (3.6) is true.

It follows from the assumption of the theorem that there exist two positive numbers M_0 and C_0 (independent of P) such that $\forall k \forall i, j ≥ k, b^{(k)} \leq C_0$, $|b^{(k)}| < M_0$. Moreover, for $i ≠ j, b^{(k+1)} = (b^{(k)}b^{(k)} - b^{(k)}b^{(k)})/b^{(k)} ≤ 0$, because $b^{(k)} > 0$ and the other three numbers are nonpositive. Therefore, for each k, we get the following system of inequalities:

$$\sum_{i=1}^{n} b_{i,i}^{(k)} μ_i > 0, \quad i = k, k + 1, \ldots, n.$$

For $k = n - 1$ the system consists of two inequalities:

$$b_{n-1,n}^{(n-1)} b_{n,n}^{(n-1)} > 0; \quad b_{n,n}^{(n-1)} b_{n,n-1}^{(n-1)} + b_{n,n}^{(n-1)} b_{n-1,n}^{(n-1)} > 0.$$

We put $μ'_i = 1$ and set out to find the rational numbers $μ'_i, \ldots, μ'_{n-1}$ and C, such that (3.4) is satisfied for $μ_i = Cμ'_i$ and $1/μ_i$ integer. From (3.7),

$$\frac{|b_{n-1,n}^{(n-1)}|}{b_{n-1,n}^{(n-1)}} < μ'_{n-1} < \frac{b_{n,n}^{(n-1)}}{|b_{n-1,n}^{(n-1)}|}$$

and

$$\frac{b_{n,n}^{(n-1)}}{|b_{n,n}^{(n-1)}|} - \frac{|b_{n-1,n}^{(n-1)}|}{|b_{n-1,n}^{(n-1)}|} = \frac{b_{n,n}^{(n-1)}}{|b_{n,n}^{(n-1)}|} ≥ \frac{C_0}{M_0}.$$

For

$$ρ = E \left[\frac{|b_{n-1,n}^{(n-1)}|}{b_{n-1,n}^{(n-1)}} E \left(3 \frac{M_0}{C_0} + 1 \right) + 1 \right] / E \left(3 \frac{M_0}{C_0} + 1 \right),$$

the following inequalities are valid:

$$ρ ≥ \left[\frac{|b_{n-1,n}^{(n-1)}|}{b_{n-1,n}^{(n-1)}} E \left(3 \frac{M_0}{C_0} + 1 \right) + 1 \right] / E \left(3 \frac{M_0}{C_0} + 1 \right) ≥ \frac{|b_{n-1,n}^{(n-1)}|}{b_{n-1,n-1}^{(n-1)}} + \frac{C_0}{3M_0 + C_0};$$

$$ρ ≤ \left[\frac{|b_{n-1,n}^{(n-1)}|}{b_{n-1,n}^{(n-1)}} E \left(3 \frac{M_0}{C_0} + 1 \right) + 2 \right] / E \left(3 \frac{M_0}{C_0} + 1 \right)$$

$$≤ \frac{|b_{n-1,n}^{(n-1)}|}{b_{n-1,n-1}^{(n-1)}} + \frac{2C_0}{3M_0} ≤ \frac{b_{n,n}^{(n-1)}}{|b_{n,n-1}^{(n-1)}|} - \frac{C_0}{3M_0}.$$

We can take $μ'_{n-1} = ρ$. Then

$$μ'_{n-1} > \frac{C_0}{3M_0 + C_0} = ν_{n-1} \quad \text{and} \quad μ'_{n-1} < \frac{M_0}{C_0} + \frac{2C_0}{3M_0} = ν'_{n-1}.$$
Moreover,
\[b_{n-1,n-1}^{(n-1)} \mu_{n-1} + b_{n-1,n}^{(n-1)} \mu_n \geq |b_{n-1,n}^{(n-1)}| \left(\frac{C_0}{3M_0 + C_0} - |b_{n-1,n}^{(n-1)}| \right) > \frac{C_0^2}{3M_0 + C_0}, \]
and
\[b_{n,n}^{(n-1)} \mu_n + b_{n,n}^{(n-1)} \mu_n \geq |b_{n,n}^{(n-1)}| \left(\frac{2C_0}{3M_0} \right) + b_{nn}^{(n-1)} \]
\[= b_{nn}^{(n)} - |b_{nn}^{(n-1)}| \frac{2C_0}{3M_0} > \frac{C_0^2}{3}. \]

Let
\[K_{n-1} = \min \left(\frac{C_0^2}{3M_0 + C_0}, \frac{C_0}{3} \right). \]
Then
\[\sum_{s=n-1}^{n} b^{(n-1)}_{ts} \mu_s > K_{n-1}, \quad l = n - 1, n. \]

Suppose that we have defined \(\mu_{k+1}^l, \ldots, \mu_{k+1}^n \) such that \(\sum_{s=k+1}^{n} b_{ls}^{(k+1)} \mu_s > K_{k+1} \) and \(\nu_{l+1} > \mu_l > \nu_l > 0 \) for \(l = k + 1, \ldots, n \), where \(K_l, \nu_l, \nu_{l+1} \) depend only on \(l, M_0 \) and \(C_0 \). Now, we must define \(\mu_k^l, K_k, \nu_k, \nu_{k+1}^l \) such that
\[\sum_{s=k+1}^{n} b_{ls}^{(k)} \mu_s > K_k, \quad l = k, \ldots, n \quad \text{and} \quad \nu_k > \mu_k > \nu_k > 0. \]

This system is equivalent to the system
\[-\sum_{s=k+1}^{n} b_{ls}^{(k)} \mu_s < \mu_k < -\sum_{s=k+1}^{n} b_{ls}^{(k)} \mu_s, \quad l = k + 1, \ldots, n. \]

The following inequalities hold
\[\sigma_k = \sum_{s=k+1}^{n} \frac{|b_{sk}^{(k)}|}{b_{sk}^{(k)}} \mu_s < \frac{M_0}{C_0} \sum_{s=k+1}^{n} \nu_s; \]
\[-\sum_{s=k+1}^{n} \left(\frac{b_{sk}^{(k)}}{b_{sk}^{(k)}} - \frac{b_{sk}^{(k)}}{b_{sk}^{(k)}} \right) \mu_s = -\sum_{s=k+1}^{n} \frac{b_{ls}^{(k+1)}}{b_{ls}^{(k)}} \mu_s > \frac{K_{k+1}}{M_0}. \]

Let
\[\mu_k = \left[\sigma_k \left(3M_0 + 1 \right) + 2 \right]/\left(3M_0 + 1 \right). \]
Then
\[\sigma_k + \frac{K_{k+1}}{3M_0 + K_{k+1}} \leq \mu_k \leq \sigma_k + \frac{2K_{k+1}}{3M_0} < -\sum_{s=k+1}^{n} \frac{b_{ls}^{(k+1)}}{b_{ls}^{(k)}} \mu_s - \frac{K_{k+1}}{3M_0}, \]
therefore
\[\nu_k = \frac{K_{k+1}}{3M_0} + K_{k+1}, \quad \nu_k = \frac{M_0}{C_0} \sum_{s=k+1}^{n} \nu_s + \frac{2K_{k+1}}{3M_0}. \]
and
\[\sum_{s=k}^{n} b_{h,k}^{(k)} \mu_{s}^{*} \geq b_{h,k}^{(k)} \left[\sum_{s=k+1}^{n} \left| b_{h,k}^{(k)} \right| \mu_{s}^{*} + \frac{K_{k+1}}{3M_0 + K_{k+1}} \right] - \sum_{s=k+1}^{n} \left| b_{h,k}^{(k)} \right| \mu_{s}^{*} \geq \frac{C_{0}K_{k+1}}{3M_0 + K_{k+1}}, \]

and, for \(l > k, \)
\[\sum_{i=k}^{n} b_{i}^{(k)} \mu_{i}^{*} \geq b_{i}^{(k)} \left[\sum_{i=k+1}^{n} \left| b_{i}^{(k)} \right| \mu_{i}^{*} + \frac{2K_{k+1}}{3M_0} \right] + \sum_{i=k+1}^{n} b_{i}^{(k)} \mu_{i}^{*} \geq \frac{K_{k+1}}{3}. \]

We can then take
\[K_{k} = \min \left(\frac{K_{k+1}}{3}, \frac{C_{0}K_{k+1}}{3M_0 + K_{k+1}} \right). \]

We have the estimates
\[C_{0} > K_{k} > C_{0}n^{-k+1}/(3M_0 + 3C_0)^{n-k}, \quad \nu_{k} > [C_{0}/(3M_0 + 3C_0)]^{n-k+1}, \]
\[\nu_{k}^* < \frac{5}{3} \frac{(n-k)^{2}(n-k+1)}{2} \left(\frac{M_0}{C_0} \right)^a. \]

For \(\mu_{1}^{*}, \ldots, \mu_{n}^{*} \), defined as before, we take
\[m_{i} = \frac{1}{\nu_{i}} \text{lcm} \left[n \sum_{i=k+1}^{n} \nu_{i}^{*} E \left(\frac{3M_0}{K_{k+1}} + 1 \right) + 2 \right], \]

where lcm denotes the least common multiple of the numbers in brackets for \(k = 1, \ldots, n-1; K_{n} = C_{0}, \sigma_{n} = |b_{(n-1)}^{(n-1)}/b_{(n-1),n-1}^{(n-1)}/b_{(n-1),n-1}^{(n-1)}|. \) Then the numbers \(m_{i} \) satisfy the inequality
\[m_{i} \leq \frac{1}{\nu_{i}} \prod_{k=1}^{n-1} E \left[\frac{M_0}{C_0} \sum_{s=k+1}^{n} \nu_{s}^{*} E \left(\frac{3M_0}{K_{k+1}} + 1 \right) + 2 \right] \]
\[\leq \left(\frac{3M_0 + 3C_0}{C_0} \right)^{n+1} \prod_{k=1}^{n-1} E \left[\frac{5}{6} \frac{M_0}{C_0} n^3(n+1) \left(\frac{M_0}{C_0} \right)^a \right] E \left(\frac{3M_0(3M_0 + 3C_0)^{n-k-1}}{C_0^{k}} + 1 \right) + 2 \].

The estimate is independent of \(P \), and the theorem is proved.

In the particular case, if we can take for each point \(P \in G_{h} \) the same numbers \(m_{i} \), satisfying (3.4), then we can consider, instead of the square net, a rectangular net with steps \(h_{i} = m_{i}h \) \((i = 1, 2, \ldots, n) \). Then the mesh-neighborhood of each point \(P \) consists of the mesh-points which lie nearest to \(P \). In this case, the operator \(L \) need not be uniformly elliptic, as the matrix \([b_{i,j}] \) need not be positive definite near the boundary.

However, if the coefficients of \(L \) are singular on the boundary, then the operator \(L_{h} \) given by (3.3) is not always of positive type. In this case we define following P. Jamet:
\[\alpha_{i}^{*}(P,h) = \exp \int_{z_{i}}^{z_{i}+h_{i}/2} \frac{b_{i}(x_{1}, \ldots, x_{i-1}, y, x_{i+1}, \ldots, x_{n}, t)}{A_{i}(x_{1}, \ldots, x_{i-1}, y, x_{i+1}, \ldots, x_{n}, t)} dy, \]
\[\alpha_{i}^{-}(P,h) = \exp \int_{z_{i}}^{z_{i}-h_{i}/2} \frac{b_{i}(x_{1}, \ldots, x_{i-1}, y, x_{i+1}, \ldots, x_{n}, t)}{A_{i}(x_{1}, \ldots, x_{i-1}, y, x_{i+1}, \ldots, x_{n}, t)} dy. \]
We substitute the α_i and β_i as defined in (3.2) for those i, for which A_i is singular. The operator corresponding to (3.8) is always positive, because

$$\alpha_i v, i, t + \beta_i (v, i, t + v, i) / 2 = A_i [\alpha_i v, i - \alpha_i v, i] / h_i$$

and the coefficients α_i^+ and α_i^- are positive.

Lemma 3.2. The operator (3.2) with the coefficients (3.8) is consistent with L in the norm $C_0(G')$ for any $G' \subset G$.

Proof. For G' there exist the numbers $N > 0, \varepsilon > 0$ such that $|b_i(P)/\sqrt{A_i(P)}| \leq N$ and $\sqrt{A_i(P)} \leq \varepsilon$ for $P \in G'$. Therefore

$$\alpha_i^+(P, h) = \exp \left(\frac{h_i b_i(P)}{2 \sqrt{A_i(P)}} + O(h_i^2) \right) = 1 + \frac{h_i b_i(P)}{2 \sqrt{A_i(P)}} + O(h_i^2)$$

and

$$\alpha_i^-(P, h) = 1 - \frac{h_i b_i(P)}{2 \sqrt{A_i(P)}} + O(h_i^2).$$

Hence,

(3.9) $\alpha_i(P, h) = A_i(P) + O(h_i^2), \quad \beta_i(P, h) = b_i(P) + O(h_i).$

Because

$$v, i, t + v, i, t = v, i, t - \frac{m_i}{m_i} v, i, t - \frac{m_i}{m_i} v, i, t$$

and

$$v, i, t + v, i, t = \frac{m_i}{m_i} v, i, t + \frac{m_i}{m_i} v, i, t - v, i, t,$$

we have

$$L_\ast v(P) = \sum_{i=1}^n [A_i(P) + O(h_i^2)] v, i, t + \sum_{i=1}^n \sum_{j=i+1}^n a_i^+(P) v, i, j$$

$$- \sum_{i=1}^n \sum_{j=i+1}^n a_i^-(P) v, i, j + \sum_{i=1}^n [b_i(P) + O(h_i)] \frac{v, i, t + v, i, t}{2} - c(P)v - d(P)v_i$$

$$= \sum_{i=1}^n [a_i(P) + O(h_i^2)] v, i, t$$

$$+ \sum_{i=1}^n \sum_{j=i+1}^n \{ a_i^+(P) (v, i, i + v, i, i) + a_i^-(P) (v, i, i + v, i, i) \}$$

$$+ \sum_{i=1}^n [b_i(P) + O(h_i)] \frac{v, i, t + v, i, t}{2} - c(P)v - d(P)v_i.$$

Using this equation, we deduce that for $v \in C'(G')$
\[\max_{P \in G'} |L_{\Delta}v(P) - Lv(P)| = O(h + \tau). \]

We take \(h/\tau = \text{const} \), therefore \(\max_{P \in G'} |L_{\Delta}v(P) - Lv(P)| = O(h) \).

Moreover, if \(a_{ij}, b_i, c, d \in C^r(G) \), then in any \(G' \subset \bar{G}' \subset G \) the difference quotients of the order \(p \) of \(a, \beta, c, \text{ and } d \) are uniformly bounded for all \(P \in G'_k \) and for all \(h \) sufficiently small.

IV. Sufficient Conditions for Uniform Boundedness of the Solutions. In this section we study the existence of a function \(\varphi(P) \) which satisfies condition (i) of Theorem 2.1. The existence of such a function guarantees the uniform boundedness of the approximations \(v(P, h) \). The following criteria are given in [3] (we assume that \(G_h = G'_k \) and \(L_h \) is defined by formula (3.2) together with (3.3) or (3.8)):

1. Suppose \(a(P) > m > 0 \) in \(G \), then we can take \(\varphi(P) = -1/m \).
2. Suppose \(d(P) > m > 0 \) in \(G \), then we take \(\varphi(P) = -(K + t/m) \), where \(K > 0 \) is chosen so large that \(\varphi(P) < 0 \) in \(G \).
3. If there exists an \(i \) such that \(A_1(P) > m > 0 \) and \(|b_i(P)| < M \) in \(G \), then \(\varphi(P) = K(\exp(\rho x_i) - K') \), with \(\rho > M/m \) and \(K, K' \) sufficiently large, satisfies condition (i) of Theorem 2.1.

V. Estimates of the Solutions of the Finite-Difference Problem. Let \(L_h \) be a finite-difference operator of positive type which has the form (3.2) for all \(P \in G_h \). Let \(\mathfrak{F} = \{v(P, h)\} \) be a family of mesh-functions defined for each \(h \) on \(G_h \subset G'_k \) and such that \(L_h v(P, h) = f(P), \forall P \in G_h \); \(\mathfrak{F}^{(s)} \) be the family of all difference quotients of order \(p \) of the functions of \(\mathfrak{F} \); \(G' \) be an arbitrary interior subdomain of \(G \) (i.e., \(G' \subset \bar{G}' \subset G \)). Let the numbers \(m_1 \) be the same for all \(P \in G \). Let the coefficients \(a_{ij}, b_i, c, d \in C^{n+1}(G) \) and their derivatives of order \(n+1 \) be Lipschitz-continuous in \(G' \). We intend to show that the condition (ii) of Theorem 2.1 is satisfied.

We shall firstly prove the uniform boundedness of the sums \(\sum_{P \in G_h} w_2(P, h) \), where \(w \) are difference quotients of order \(\leq n + 1 \) of the functions of \(\mathfrak{F}, \mathfrak{F}^{(1)}, \mathfrak{F}^{(2)}. \) To avoid complications in the proof, we will develop the argument only in the case \(n = 2 \).

Let \(h \) be so small that \(G_h \subset G_h \). Then, at each point \(P \in G_h \), we have

\[
L_{\Delta}v = \alpha_1 v_{1,1} + \alpha_{12}(v_{1,2} + v_{1,2} + v_{1,2}) + \alpha_{12}(v_{1,1} + v_{1,2}) + \alpha_{22} v_{2,2} + \beta_1 (v_{1,1} + v_{1,2})/2 + \beta_2 (v_{2,1} + v_{2,2})/2 - cv - dv_1 = f,
\]

where

\[
\alpha_{11} = \alpha_1 + \frac{h_1}{h_2} |a_{11}|, \quad \alpha_{22} = \frac{h_2}{h_1} |a_{22}|, \quad \alpha_{12} = a_{12}, \quad \alpha_{-12} = \bar{a}_{12},
\]

and \(\alpha, \beta \) are defined by formula (3.3) or (3.8).

Moreover, we shall assume that \(d = 1 \) in \(G' \). There exist constants \(m \) and \(M \), such that for all \(P \in G_h \) we have

\[
0 < m < \alpha_i(P, h) < M, \quad |a_{ij}(P)| < M, \quad |\beta_i(P)| < M, \quad i, j = 1, 2; \quad \alpha_i(P) < M, \quad |f(P)| < M, \quad |v(P, h)| < M \quad \text{for } v \in \mathfrak{F}
\]

for \(h \) small enough. We assume that \(M \) is also an upper bound for any of the difference quotients of \(\alpha_{ii}, \beta_i, c, f \) of order \(\leq n + 2 \). We denote \(L_{\Delta}^2 v = L_{\Delta} v + v_1. \)
Let $h = (h_1, h_2, \tau)$ be fixed. We consider an expanding sequence of concentric rectangles in G'_h, say \{\(Q_0, \ldots, Q_N\)\}, such that

\[Q_i = \{P = (ih_1, jh_2, k\tau) \in G'_h: i \leq i_1, j \leq j_1, k \leq k_1 \}; \]

\[i_{i+1} = i_i - 1, \quad i'_{i+1} = i'_i + 1, \quad j_{i+1} = j_i - 1, \quad j'_{i+1} = j'_i + 1, \]

\[k_{i+1} = k_i - 1, \quad k'_{i+1} = k'_i + 1. \]

We define

\[S_i = Q_i - Q_{i-1}, \quad R_{1i} = \{P = (ih_1, jh_2, k\tau) \in Q_i: i = i_i \lor i = i'_i\}, \]

\[R_{2i} = \{P = (ih_1, jh_2, k\tau) \in Q_i: j = j_i \lor j = j'_i\}, \]

\[T_i = (R_{1i} \cup R_{1i-1}) \cap (R_{2i} \cup R_{2i-1}) \]

and $h_3/h_1 = \lambda, \tau/h_1 = \mu, \Delta = (\frac{2}{\lambda} + \frac{2}{\mu} + 2(1 + \lambda^2)^{1/2})M$.

Lemma 5.1. For every function w defined on G_h, the following inequality holds:

\[(m - \frac{3}{2} Mx)\tau h_1 h_2 \sum \sum \sum (w^2_{i1} + w^2_{i2} + w^2_{i3}) \leq 2\tau h_1 h_2 \sum \sum \sum |w| \cdot |L_k w| + \tau \lambda \left(\sum \sum \sum \alpha^{11} w^2 - \sum \sum \sum \alpha^{11} w^2 \right) \]

\[\leq 2\tau h_1 h_2 \sum \sum \sum |w| \cdot |L_k w| + \tau \lambda \left(\sum \sum \sum \alpha^{22} w^2 - \sum \sum \sum \alpha^{22} w^2 \right) \]

\[+ \frac{\tau}{\lambda} \left(\sum \sum \sum \alpha^{22} w^2 - \sum \sum \sum \alpha^{22} w^2 \right) + \tau h_1 \left(\Delta + \frac{\lambda}{\mu} \right) \left(\sum \sum \sum w^2 + \sum \sum \sum w^2 \right) \]

\[+ 2M \left(1 + \frac{3}{\lambda} \right) \tau h_1 h_2 \sum \sum \sum w^2 + M\tau \sum \sum \sum w^2. \]

Proof. For any function w defined on G_h, we denote

\[w(ih_1, jh_2, k\tau) = w; \quad w((i+1)h_1, jh_2, k\tau) = w^{+1}; \]

\[w((i-1)h_1, jh_2, k\tau) = w^{-i}; \quad w(ih_1, jh_2, k\tau) = w^{i-1}; \]

\[w(ih_1, jh_2, k\tau) = w(i_0h_1, jh_2, k\tau) = w^{i_0}; \]

and analogous for the indices j and k. Let

\[C(w) = \alpha_{11}^i w_{i1}^2 + \alpha_{11}^j w_{j1}^2 + \alpha_{12,1}^i w_{i2}^2 + \alpha_{12,1}^j w_{j2}^2 + \alpha_{12,2}^i w_{i3}^2 + \alpha_{12,2}^j w_{j3}^2 \]

\[+ \alpha_{22,1}^i w_{i2}^2 + \alpha_{22,1}^j w_{j2}^2 + \alpha_{22,2}^i w_{i3}^2 + \alpha_{22,2}^j w_{j3}^2 \]

\[C(w) = \alpha_{11}^i w_{i1}^2 + \alpha_{11}^j w_{j1}^2 + \alpha_{12,1}^i w_{i2}^2 + \alpha_{12,1}^j w_{j2}^2 + \alpha_{12,2}^i w_{i3}^2 + \alpha_{12,2}^j w_{j3}^2 + \alpha_{22,1}^i w_{i2}^2 + \alpha_{22,1}^j w_{j2}^2 + \alpha_{22,2}^i w_{i3}^2 + \alpha_{22,2}^j w_{j3}^2 \]

Let $j_0 \leq j \leq j'_0$, $k_0 \leq k \leq k'_0$. By summation by parts with respect to i, we get
\[h_1 h_2 \sum_{i=1}^{i'} \sum_{j=1}^{j'} [C(w) + C(w)] \]

\[= h_1 h_2 \sum_{i=1}^{i'} \sum_{j=1}^{j'} \left[-\alpha_{11} w w_{1,1} + \alpha_{11} w w_{1,1} + w_{12}(\alpha_{12} w),_2 \\
+ (\alpha_{12} w),_3 - \alpha_{12} w w_{1,1,2} - \alpha_{12} w w_{1,1,2} - \alpha_{12} w w_{1,1,2} \\
- \alpha_{12} w w_{1,1,2} + \alpha_{12} w w_{1,1,2} + w_{12}(\alpha_{22} w),_2 \\
+ (\alpha_{22} w),_3 - (\beta_1 w w_{1,1} + \beta_1 w w_{1,1} + \beta_1 w w_{1,1} + \beta_1 w w_{1,1})/2 \\
+ (w(\beta_2 w),_2 + w(\beta_2 w),_3)/2 - (\beta_2 w w_{1,2} + \beta_2 w w_{1,2})/2 + 2c w^2 \right] \]

\[+ h_2 \left[\alpha_{11} w^i w_{1,1} + \alpha_{11} w^i w_{1,1} \right] \]

Hence,

\[h_1 h_2 \sum_{i=1}^{i'} \sum_{j=1}^{j'} [C(w) + C(w)] \]

\[= -2h_1 h_2 \sum_{i=1}^{i'} \sum_{j=1}^{j'} \left[\alpha_{11} w w_{1,1} + \alpha_{11} w w_{1,1} \right] \]

\[+ h_2 \left[\alpha_{11} w^i w_{1,1} + \alpha_{11} w^i w_{1,1} \right] \]

\[+ h_1 \sum_{i=1}^{i'} \left[\alpha_{11} w^i w_{1,1} + \alpha_{11} w^i w_{1,1} \right] \]

\[+ h_1 \sum_{i=1}^{i'} \left[\alpha_{11} w^i w_{1,1} + \alpha_{11} w^i w_{1,1} \right] \]

\[+ \alpha_{11} w^i w_{1,1} \]

\[+ \alpha_{11} w^i w_{1,1} \]

\[+ \alpha_{11} w^i w_{1,1} \]

\[+ \alpha_{11} w^i w_{1,1} \]

The following inequalities hold:

\[h_1 \sum_{i=1}^{i'} \left[\alpha_{11} w^i w_{1,1} + \alpha_{11} w^i w_{1,1} \right] \]

\[= \left\{ \sum_{i=1}^{i'} \left[\alpha_{11} w^i w_{1,1} + \alpha_{11} w^i w_{1,1} \right] \right\} \]

\[\leq \frac{M}{2} \sum_{i=1}^{i'} \sum_{j=1}^{j'} \left[(h_1^2 + h_2^2)^{1/2} + (w^i)^2 + (w^i)^2 \right] \]

\[+ \frac{M}{2} \sum_{i=1}^{i'} \sum_{j=1}^{j'} \left[(w^i)^2 + (w^i)^2 \right] ; \]
\begin{align*}
 h_{1} \sum_{i = i_{0}}^{i'_{0}} \left[\alpha_{+i_{i}} w_{+i_{i-1}} + \alpha_{+i_{i}} w_{+i_{i-1}} \right]_{i_{i-1}}^{i_{i}} \\
 \leq \frac{M}{2} \sum_{i = i_{0}}^{i'_{0}} \sum_{i_{i-1} = i_{i-1, i_{i-1}'}} \left[(h_{1}^{2} + h_{2}^{2})^{1/2} \left[(w_{+i_{i}}^{2} + w_{+i_{i}}^{2}) + h_{2}[w_{+i_{i}}^{2} + (w_{+i_{i}}^{2})]\right] + \frac{M}{2} \sum_{i = i_{0}, i'_{0}} \sum_{i_{i-1} = i_{i-1, i_{i-1}'}} [(w_{+i_{i}}^{+i_{i}})^{2} + w_{+i_{i}}^{2}] \right.
 + \frac{M}{2} \sum_{i = i_{0}, i'_{0}} \sum_{i_{i-1} = i_{i-1, i_{i-1}'}} [(w_{+i_{i}}^{+i_{i}})^{2} + w_{+i_{i}}^{2}] \\
 \text{Therefore,} \\
 h_{1} h_{2} \sum_{i = i_{0}}^{i'_{0}} \sum_{i_{i-1} = i_{i-1, i_{i-1}'}} [C(w) + C(w)] \\
 \leq -2h_{1} h_{2} \sum_{i = i_{0}}^{i'_{0}} \sum_{i_{i-1} = i_{i-1, i_{i-1}'}} w L_{+i_{i}} w + \frac{h_{2}}{h_{1}} \sum_{i = i_{0}}^{i'_{0}} \left[\alpha_{+i_{i}} (w_{+i_{i}}^{2}) - \alpha_{+i_{i}} w_{+i_{i}}^{2} \right]_{i_{i-1}}^{i_{i}} \\
 + \frac{h_{1}}{h_{2}} \sum_{i = i_{0}}^{i'_{0}} \left[\alpha_{+i_{i}} (w_{+i_{i}}^{2}) - \alpha_{+i_{i}} w_{+i_{i}}^{2} \right]_{i_{i-1}}^{i_{i}} \\
 + h_{2} \sum_{i = i_{0}}^{i'_{0}} \sum_{i_{i-1} = i_{i-1, i_{i-1}'}} \left[(h_{1}^{2} + h_{2}^{2})^{1/2} \left[(w_{+i_{i}}^{2} + w_{+i_{i}}^{2}) + (w_{+i_{i}}^{2} + (w_{+i_{i}}^{2}) \right] + 2h_{2}[w_{+i_{i}}^{2} + (w_{+i_{i}}^{2})] \right]
 + \frac{1}{2} M \sum_{i = i_{0}}^{i'_{0}} \sum_{i_{i-1} = i_{i-1, i_{i-1}'}} \left[(h_{1}^{2} + h_{2}^{2})^{1/2} \left[(w_{+i_{i}}^{2} + w_{+i_{i}}^{2}) + (w_{+i_{i}}^{2} + (w_{+i_{i}}^{2}) \right] + 2h_{1}[w_{+i_{i}}^{2} + (w_{+i_{i}}^{2})] \right]
 + M \sum_{i = i_{0}}^{i'_{0}} \sum_{i_{i-1} = i_{i-1, i_{i-1}'}} [(w_{+i_{i}}^{+i_{i}})^{2} + w_{+i_{i}}^{2}] \\
 \text{Summing from } k = k_{0} \text{ to } k = k'_{0}, \text{ we get} \\
 \tau h_{1} h_{2} \sum_{k = k_{0}}^{k'_{0}} \sum_{k_{i-1} = k_{i-1, k_{i-1}'}} [C(w) + C(w)] \\
 \leq -2 \tau h_{1} h_{3} \sum_{k = k_{0}}^{k'_{0}} \sum_{k_{i-1} = k_{i-1, k_{i-1}'}} w L_{+i_{i}} w + \tau \left(\sum_{k = k_{0}}^{k'_{0}} \sum_{k_{i-1} = k_{i-1, k_{i-1}'}} \alpha_{+i_{i}} w_{+i_{i}}^{2} \right)
 + \frac{\tau}{\lambda} \left(\sum_{k = k_{0}}^{k'_{0}} \sum_{k_{i-1} = k_{i-1, k_{i-1}'}} \alpha_{+i_{i}} w_{+i_{i}}^{2} \right)
 + \tau h_{1} \sum_{k = k_{0}}^{k'_{0}} \sum_{k_{i-1} = k_{i-1, k_{i-1}'}} w^{2} + \tau h_{1} \sum_{k = k_{0}}^{k'_{0}} \sum_{k_{i-1} = k_{i-1, k_{i-1}'}} w_{+i_{i}}^{2} + M \tau \sum_{k = k_{0}}^{k'_{0}} w_{+i_{i}}^{2}.
\end{align*}
\[\tau^2 \sum_{k=k_0}^{k_0'} w_{k+1} = w w_{k+1}^+ - 2\tau \sum_{k=k_0}^{k_0'} w w_{k+1} \]
\[\geq -\frac{1}{2} \sum_{k=k_0, k_0'} [w^2 + (w^{+k})^2] - 2\tau \sum_{k=k_0}^{k_0'} w w_{k+1}. \]

Taking this inequality into (5.5), we get
\[\tau^2 \sum_{k=k_0}^{k_0'} (w_i^2 + w_{i+1}^2) \leq 4\tau \sum_{k=k_0}^{k_0'} w w_{i+1} + 2 \sum_{k=k_0, k_0'} w^2, \]

hence
\[\tau h_1 h_2 \sum_{q_i} \sum_{q_{i+1}} (w_i^2 + w_{i+1}^2) \leq 4\tau h_2 \sum_{q_i} \sum_{q_{i+1}} w w_{i+1} + \frac{2}{\mu} h_2 \sum_{q_i} \sum w^2. \]

Multiplying this inequality by \(\tau/2 \) and adding (5.4), we get
\[\tau h_1 h_2 \sum_{q_i} \sum_{q_{i+1}} \left[C(w) + \tilde{C}(w) + \frac{\tau}{2} (w_i^2 + w_{i+1}^2) \right] \]
\[\leq 2\tau h_1 h_2 \sum_{q_i} \sum_{q_{i+1}} \sum_{q_{i+2}} w(L_i w - w_i) + \tau \lambda \left(\sum_{q_{i+1}} \sum_{q_{i+2}} \alpha_{11} w^2 - \sum_{q_{i+1}} \sum_{q_{i+2}} \alpha_{11} w^2 \right) \]
\[+ \frac{\tau}{\lambda} \left(\sum_{q_{i+1}} \sum_{q_{i+2}} \alpha_{22} w^2 - \sum_{q_{i+1}} \sum_{q_{i+2}} \alpha_{22} w^2 \right) \]
\[+ \tau h_1 \left(\lambda + \frac{\lambda}{\mu} \right) \left(\sum_{q_i} \sum w^2 + \sum_{q_i} \sum w^2 \right) + M \tau \sum_{q_i} \sum w^2. \]

The next step of the proof is to estimate \(\tau h_1 h_2 \sum_{q_i} \sum_{q_{i+1}} \left[C(w) + \tilde{C}(w) \right] \) in terms of \(\tau h_1 h_2 \sum_{q_i} \sum_{q_{i+1}} \left[C(w) + \tilde{C}(w) \right] \). We have
\[\tau h_1 h_2 \sum_{q_i} \sum_{q_{i+1}} \left[C(w) + \tilde{C}(w) \right] = D + E + F + H, \]

where
\[D = \tau h_1 h_2 \sum_{q_i} \sum_{q_{i+1}} \left[\alpha_{11} w_{i+1}^2 + (\alpha_{-12} + \alpha_{1-12}) w_{i+1} w_{i+2} + (\alpha_{1-12} + \alpha_{12}) w_{i+1} w_{i+2} \right. \]
\[+ \alpha_{22} w_{i+1}^2 + \alpha_{11} w_{i+1}^2 + (\alpha_{-12} + \alpha_{1-12}) w_{i+1} w_{i+2} \]
\[+ (\alpha_{1-12} + \alpha_{12}) w_{i+1} w_{i+2} + \alpha_{22} w_{i+1}^2 ; \]
\[E = \tau h_1 h_2 \sum_{q_i} \sum_{q_{i+1}} \sum_{q_{i+2}} \left[w_{i+1} w_{i+2} + w_{i+1} w_{i+2} + w_{i+1} w_{i+2} + w_{i+1} w_{i+2} \right. \]
\[+ \alpha_{22} w_{i+1}^2 + \alpha_{11} w_{i+1}^2 + \alpha_{11} w_{i+1}^2 + \alpha_{11} w_{i+1}^2 \]
\[+ \alpha_{11} w_{i+1}^2 + \alpha_{11} w_{i+1}^2 + \alpha_{11} w_{i+1}^2 ; \]
\[F = \frac{1}{2} \tau h_1 h_2 \sum_{q_i} \sum_{q_{i+1}} \sum_{q_{i+2}} \left[w_{i+1} w_{i+2} + w_{i+1} w_{i+2} + w_{i+1} w_{i+2} + w_{i+1} w_{i+2} \right. \]
\[+ \alpha_{22} w_{i+1}^2 + \alpha_{11} w_{i+1}^2 + \alpha_{11} w_{i+1}^2 + \alpha_{11} w_{i+1}^2 ; \]
\[H = 2\tau h_1 h_2 \sum_{q_i} \sum_{q_{i+1}} \sum c w^2 \geq 0. \]

Using (5.2), we deduce
\[D \geq \sum_{Q_{s}} \sum_{Q_{s}} \left[\alpha_{11} w_{1}^2 + \frac{1}{2} (\alpha_{-12} + \alpha_{+12}) \left(\frac{1}{\lambda} w_{1}^2 + \lambda w_{2}^2 \right) - \frac{1}{2} (\alpha_{-12} + \alpha_{+12}) \left(\frac{1}{\lambda} w_{1}^2 + \lambda w_{2}^2 \right) \right. \\
+ \alpha_{+12} w_{2}^2 + \alpha_{-12} w_{1}^2 + \frac{1}{2} (\alpha_{-12} + \alpha_{+12}) \left(\frac{1}{\lambda} w_{1}^2 + \lambda w_{2}^2 \right) \\
\left. - \frac{1}{2} (\alpha_{+12} + \alpha_{-12}) \left(\frac{1}{\lambda} w_{1}^2 + \lambda w_{2}^2 \right) + \alpha_{+12} w_{2}^2 \right] \]

\[\geq \sum_{Q_{s}} \sum_{Q_{s}} (w_{1}^2 + w_{1}^2 + w_{2}^2 + w_{2}^2), \]

because for \(h \) small enough, \(\alpha_{+12} - (\alpha_{+12} - \alpha_{-12})/\lambda > m; \)

\[|E| \leq 3M \tau h_{1} h_{2} \sum_{Q_{s}} \sum_{Q_{s}} |w| (|w_{1}| + |w_{2}| + |w_{1}| + |w_{2}|) \]

\[\leq \frac{6M}{\kappa} \tau h_{1} h_{2} \sum_{Q_{s}} \sum_{Q_{s}} w^{2} + \frac{3}{\kappa} M \tau h_{1} h_{2} \sum_{Q_{s}} \sum_{Q_{s}} (w_{1}^2 + w_{2}^2 + w_{1}^2 + w_{2}^2) \]

for any positive number \(\kappa; \)

\[|F| \leq 2M \tau h_{1} h_{2} \sum_{Q_{s}} \sum_{Q_{s}} w^{2}. \]

Using those estimates we deduce from (5.7)

\[(m - \frac{1}{2} M \kappa) \tau h_{1} h_{2} \sum_{Q_{s}} \sum_{Q_{s}} (w_{1}^2 + w_{2}^2 + w_{1}^2 + w_{2}^2) \]

(5.8)

\[\leq \tau h_{1} h_{2} \sum_{Q_{s}} \sum_{Q_{s}} \sum_{Q_{s}} \{(C(w) + \bar{C}(w)) + 2M \left(1 + \frac{3}{\kappa} \right) \tau h_{1} h_{2} \sum_{Q_{s}} \sum_{Q_{s}} \sum_{Q_{s}} w^{2} \}. \]

Lemma 5.1 follows directly from (5.6) and (5.8) and the obvious fact that the preceding argument is valid for any \(l \) and not only \(l = 0. \)

Lemma 5.2. Let \(G'' \subset G' \subset G'. \) Suppose that functions \(y \) and \(z \) defined on \(G' \) satisfy for any rectangle \(Q_{1} \subset G' \) an inequality of the form:

\[\tau h_{1} h_{2} \sum_{Q_{1}} \sum_{Q_{1}} y^{2} \]

(5.9)

\[\leq \tau M_{0} \left(\sum_{k_{1}} \sum_{k_{1}} \varphi_{2} z^{2} - \sum_{k_{1}} \sum_{k_{1}} \varphi_{1} z^{2} \right) + \tau M_{1} \left(\sum_{k_{1}} \sum_{k_{1}} \varphi_{2} z^{2} - \sum_{k_{1}} \sum_{k_{1}} \varphi_{1} z^{2} \right) \]

\[+ \tau h_{1} M_{2} \left(\sum_{s_{1}} \sum_{s_{1}} z^{2} + \sum_{s_{1}} \sum_{s_{1}} z^{2} \right) + \tau h_{1} h_{2} M_{3} \sum_{Q_{1}} \sum_{Q_{1}} \sum_{Q_{1}} z^{2} + M_{4}, \]

where \(M_{0}, M_{1}, M_{2}, M_{3}, M_{4} \) are positive constants and where \(\varphi_{1} \) and \(\varphi_{2} \) are positive bounded functions defined on \(G' \). Then, we have the estimate

\[\tau h_{1} h_{2} \sum_{Q_{1}} \sum_{Q_{1}} \sum_{Q_{1}} y^{2} \leq K \tau h_{1} h_{2} \sum_{Q_{1}} \sum_{Q_{1}} \sum_{Q_{1}} z^{2} + K', \]

where the constants \(K \) and \(K' \) depend only on the constants \(M_{1} \), on the bound of the functions \(\varphi_{1} \) and \(\varphi_{2} \) and on the domains \(G' \) and \(G'' \).
Proof. The proof of this lemma is a simple modification of the proof which is contained in Courant, Friedrichs and Lewy [1]. It is based on a double summation of inequality (5.9).

Lemma 5.3. If conditions (5.2) hold for \(n = 2 \), then the sums \(\tau h_i h_3 \sum \sum \sigma_{k',r} w^{r} \) for all \(w \), which are difference quotients of order \(\leq 5 \) of the functions of \(\bar{S} \), are uniformly bounded.

Proof. We will study separately each of these sums.

1. \(\tau h_i h_3 \sum \sum \sigma_{k',r} w^{r} \). We put \(w = v \) in formula (5.3). Since \(|v(P, h)| < M \) and \(|L_i v(P, h)| = |f(P)| < M \), it follows from Lemma 5.1 that

\[
(m - \frac{3}{2}M)\tau h_i h_3 \sum \sum \sigma_{k',r} w^{r} \leq 2M^2 V(G) + \tau \lambda \left(\sum \sum \sigma_{a_1} w^{a_1} - \sum \sum \sigma_{a_1} w^{2} \right)
\]

\[
+ \frac{T}{\lambda} \left(\sum \sum \sigma_{a_2} w^{2} - \sum \sum \sigma_{a_2} w^{2} \right) + \tau h_i \left(\Lambda + \frac{\lambda}{\mu} \right) \left(\sum \sum \sigma_{a_1} w^{2} + \sum \sum \sigma_{a_1} w^{2} \right)
\]

\[
+ 2M \left(1 + \frac{3}{\kappa} \right) \tau h_i h_3 \sum \sum \sigma_{a_1} w^{2} + 16M^4 \phi,
\]

where \(V(G) \) denotes volume of \(G, \varphi \)—diameter of \(G \). Taking \(y^2 = w_1 + w_2 + w_3 + w_4 \) and \(z = w \), we get the inequality of the form (5.9). Applying Lemma 5.2, we deduce that the sums \(\tau h_i h_3 \sum \sum \sigma_{a_1} w^{2} \) are uniformly bounded.

2. \(\tau h_i h_3 \sum \sum \sigma_{a_1} w^{2} \). We take \(w = v_1 \). It follows from (5.1) that

\[
\begin{align*}
L_i w_1 &= f_1 - \alpha_{11,1} w_{1,1} - \alpha_{12,1} (w_{1,2} + w_{1,3}) - \alpha_{21,1} (w_{2,1} + w_{3,1}) - \alpha_{22,1} v_{2,3}^+ \\
&- \beta_{1,1} (w_{1}^+ + v_1)/2 - \beta_{2,1} (v_2^+ + v_{2,3}^+)/2 + c_1 v^+.
\end{align*}
\]

Therefore, using (5.2), we have

\[
|L_i w_1| \cdot |w_1| \leq M \cdot |w_1| \cdot (1 + M + |w_{1,1}| + |w_{1,2}| + |w_{1,3}| + |w_{3,1}| + |w_{3,2}| + |w_{3,3}| + |w_{1}^+| + |v_{2,3}^+| + \frac{1}{2}|v_{1,1}^+| + |v_{1,2}^+| + |v_{1,3}^+| + |v_{2,3}^+|).
\]

Since

\[
|w_1| \leq (1 + w_3^+)/2, \quad |w_1| \cdot |w_{1,r}| \leq \frac{w_1^2}{2r} + \frac{k}{2} w_1^2,
\]

and \(\tau h_i h_3 \sum \sum \sigma_{a_1} w^{2}, \tau h_i h_3 \sum \sum \sigma_{a_1} v_{2}^{2} \) are bounded, we have the inequality

\[
\tau h_i h_3 \sum \sum \sigma_{a_1} |L_i w_1| \cdot |w_1| \leq M \eta_i(k)
\]

\[
+ \frac{k}{2} M \tau h_i h_3 \sum \sum \sigma_{a_1} \left(v_{1,1}^{2} + (v_{1,2}^{2} + v_{1,3}^{2} + (v_{2,3}^{2} + v_{1,2}^{2} + v_{1,3}^{2})^{2} + v_{1,3}^{2} + (v_{2,3}^{2} + v_{2,3}^{2})^{2}).
\]

Likewise,
\[\tau h_h \sum \sum_{q_i} |L_q v_2| \cdot |v_2| \leq \mathcal{M}(\kappa) \]

\[+ \frac{\kappa}{2} M \tau h_h \sum \sum_{q_i} \sum \left[v_{2,2}^2 + \left(v_{2,1}^2 \right)^2 + v_{2,1}^2 + v_{2,1}^2 \right]. \]

If we substitute these two inequalities in (5.3) and take

\[z^2 = v_{1,1}^2 + v_{1,3}^2 + v_{1,1,2}^2 + v_{1,2,1}^2 + v_{1,2,1}^2 + v_{1,2,2}^2 + v_{1,3,3}^2, \]

we get the inequality

\[(m - \frac{7}{3} M \kappa) \tau h_h \sum \sum_{q_i} \sum y^2 \]

\[- M \tau h_h \sum \sum_{q_i} \left(v_{1,2}^2 + v_{1,3}^2 + v_{1,2}^2 + v_{1,2}^2 + v_{1,3}^2 \right) \]

\[\leq \mathcal{M}(\kappa) + \tau \lambda \left(\sum_{\alpha, \beta, \gamma} \sum_{i, j, k} \alpha_i \alpha_j \alpha_k \right) + \left(\sum_{\alpha, \beta, \gamma} \sum_{i, j, k} \alpha_i \alpha_j \alpha_k \right) \]

\[+ \tau h_h \left(v_{1,1} + v_{1,1}^2 + \frac{1}{\mu}_1 \left(\sum_{\alpha, \beta, \gamma} \sum_{i, j, k} \alpha_i \alpha_j \alpha_k \right) + 2 M (1 + \frac{3}{\kappa}) \tau h_h \sum \sum_{q_i} \sum z^2. \]

For \(\tau \) small enough,

\[M \tau h_h \sum \sum_{q_i} \left(v_{1,2}^2 + v_{1,3}^2 + v_{1,2}^2 + v_{1,2}^2 + v_{1,3}^2 \right) \]

\[\leq \frac{m}{2} \tau h_h \sum \sum_{q_i} \sum y^2, \]

therefore, we get an inequality of the form (5.9). Applying Lemma 5.2, we deduce that the sums \(\tau h_h \sum \sum_{q_i} \sum \alpha_{\kappa} v_{2,2} \) are uniformly bounded for any \(G' \subset G' \subset G \).

3. \(\tau h_h \sum \sum_{q_i} \sum \alpha_{\kappa} v_{1,2} \). Formula (5.1) yields

\[|v_1| \leq |f| + \mathcal{M}(|v_{1,1}| + |v_{1,3}| + |v_{1,1,2}| + |v_{1,2,1}| + |v_{1,2,3}| + |v_{1,3,3}| + |v_{2,3}| \]

\[+ \frac{1}{2} (|v_1| + |v_{1,1}| + |v_{1,3}| + |v_{1,2,1}| + |v_{1,2,3}| + |v_{1,3,3}| + |v_{2,3}|). \]

Therefore, the boundedness of the sums \(\tau h_h \sum \sum_{q_i} \sum \alpha_{\kappa} v_{2,2} \) and \(\tau h_h \sum \sum_{q_i} \sum \alpha_{\kappa} v_{1,2} \), implies the boundedness of the sums \(\tau h_h \sum \sum \sum \alpha_{\kappa} v_{1,2} \).

The uniform boundedness of all sums \(\tau h_h \sum \sum \sum \alpha_{\kappa} w^2 \) can be proved in the same way, after differencing Eq. (5.1).

Lemma 5.4 (Sobolev's Theorem). If the sums \(\tau h_h \cdots h_n \sum \sum \sum \sum \sum \alpha_{\kappa} w^2(P, h) \) are uniformly bounded for all \(w(P, h) \) which are difference quotients of order \(\leq n \) of the functions of \(\mathcal{S} \), then the family \(\mathcal{S} \) is equicontinuous in any subdomain \(G'' \subset G'' \subset G' \).

Proof. The proof is a modification of the proof of Sobolev's theorem which is contained in [4].

We denote

\[P_0 = (h_0 h_1, \cdots, i_0 h_n, k_0 \tau), \quad P_1 = (i_0 h_1, \cdots, i_0 h_n, k'' \tau), \]

\[R(P_0) = \{ P = (i_1 h_1, \cdots, i_n h_n, k \tau): i_0 \leq i_1 \leq i'' (j = 1, \cdots, n), k_0 \leq k \leq k'' \}, \]

\[(i_j' - i_j) h_i = b_i, \quad (k'' - k_0) \tau = a. \]

We take \(b_i \) and \(a \) such that for each \(P_0 \in G'_0 \) is \(R(P_0) \subset G'_0 \). Let \(i_0 \leq i_1 \leq i'' \). For
any function \(w \) defined on \(G' \),
\[
\left. w \right|_{i_{i_k} = i_{i_k}'} = h_1 \sum_{i_{i_k} = i_{i_k}'} w_{i_{i_k}}.
\]

Applying Schwarz's inequality, we get
\[
[w|_{i_{i_k} = i_{i_k}'}]^2 \leq \frac{b_1}{h_1} h_1^2 \sum_{i_{i_k} = i_{i_k}'} w_{i_{i_k}}^2,
\]
therefore
\[
[w|_{i_{i_k} = i_{i_k}'}] \leq |w|_{i_{i_k} = i_{i_k}'} + (b_1 h_1)^{1/2} \left(\sum_{i_{i_k} = i_{i_k}'} w_{i_{i_k}}^2 \right)^{1/2}.
\]

Squaring both sides of this inequality and applying the inequality \((a + b)^2 \leq 2a^2 + 2b^2\), we have
\[
(w|_{i_{i_k} = i_{i_k}'})^2 \leq 2(w|_{i_{i_k} = i_{i_k}'})^2 + 2b_1 h_1 \sum_{i_{i_k} = i_{i_k}'} w_{i_{i_k}}^2.
\]

Summing these inequalities for \(i_i^k \leq i_i' \leq i_i'' \), we obtain
\[
\frac{b_1}{h_1} (w|_{i_{i_k} = i_{i_k}'})^2 \leq 2 \sum_{i_{i_k} = i_{i_k}'} w^2 + 2b_1 \sum_{i_{i_k} = i_{i_k}'} w_{i_{i_k}}^2.
\]

Hence
\[
(w|_{i_{i_k} = i_{i_k}'})^2 \leq \frac{h_1}{b_1} \left[\sum_{i_{i_k} = i_{i_k}'} w^2 + b_1 \sum_{i_{i_k} = i_{i_k}'} w_{i_{i_k}}^2 \right].
\]

By induction we get
\[
(w|_{i_{i_k} = i_{i_k}'}^1)^2 \leq \frac{h_1}{b_1} \left[\sum_{i_{i_k} = i_{i_k}'} (w|_{i_{i_k} = i_{i_k}'}^1)^2 + b_1 \sum_{i_{i_k} = i_{i_k}'} (w_{i_{i_k}}^2)|_{i_{i_k} = i_{i_k}'} \right]
\leq 4 \frac{h_1 h_2}{b_1 b_2} \sum_{i_{i_k} = i_{i_k}'} \sum_{i_{i_k} = i_{i_k}'} (w^2 + b_1 w_{i_{i_k}}^2 + b_2 w_{i_{i_k}}^2 + b_1 b_2 w_{i_{i_k}, 1, 2, ... n})^2.
\]

and, for \(n \),
\[
w(i_0 h_1, \ldots, i_n h_n, k \tau)^2 \leq 2^n \frac{h_1 \cdots h_n}{b_1 \cdots b_n} \sum_{i_{i_k} = i_{i_k}'} \sum_{i_{i_k} = i_{i_k}'} \left[w^2 + \sum_{p=1}^n b_1 w_{i_{i_k}}^2 + \cdots + b_1^2 \cdots b_n^2 w_{i_{i_k}, 1, 2, ... n}^2 \right].
\]

For any function \(v \in \mathcal{F} \),
\[
v(P_1) - v(P_0) = \tau \sum_{k=1}^{k'-1} v(i_0 h_1, \ldots, i_n h_n, k \tau),
\]
therefore
\[
|v(P_1) - v(P_0)| \leq (\tau)^{1/2} \left(\sum_{k=1}^{k'-1} v(i_0 h_1, \ldots, i_n h_n, k \tau) \right)^{1/2}
\leq \left(\tau^{1/2} \frac{h_1 \cdots h_n}{b_1 \cdots b_n} \sum_{k=1}^{k'-1} \left[v_i^2 + \sum_{k=1}^n b_1^2 v_{i_{i_k}}^2 + \cdots + b_1^2 \cdots b_n^2 v_{i_{i_k}, 1, 2, ... n}^2 \right] \right)^{1/2}.
\]
The assumption of the lemma implies the equicontinuity of the functions \(v \in \varphi \) with respect to \(t \). In the same way, we can show the equicontinuity with respect to each variable; therefore the functions of \(\varphi \) are equicontinuous.

Theorem 5.1. Let \(G \subset \mathbb{R}^3 \) and let the coefficients of the operator \(L \) be of the class \(C^3(G) \) and their third derivatives be Lipschitz-continuous in any \(G' \subset \bar{G}' \subset G \), and let \(\forall h \leq h_0 \ \forall P \in G_h \ L_h(P, h) = f(P) \). Then, any sequence \(\{v(P, h_n); h_n \to 0\} \subset \varphi \) admits a subsequence which converges uniformly in \(G' \) to a solution of the differential equation \(Lu = f \).

Proof. If the assumptions of the theorem are satisfied, we can apply Lemma 5.3. Then, Lemma 5.4 shows that \(v, v_{i,i}, v_{i,i,i}, v_i \) are equicontinuous in \(G'_h \) for \(h \) small enough. \(G' \) is covered by cubic cells of the mesh; by linear interpolation in these cells, we can extend the equicontinuous family \(\varphi \) of the mesh-functions into an equicontinuous family defined on all of \(\bar{G}' \).

The theorem follows by application of Ascoli’s theorem to the families \(\varphi, \varphi^{(1)} \) and \(\varphi^{(2)} \) and because of conditions (3.9).

VI. Existence of Discrete Barriers. Throughout this section, we study various types of local conditions on \(G \) and on \(L_h \) which guarantee the existence of a strong discrete barrier.

Let \(Q = (x_1^0, x_2^0, t^0) \subseteq \Gamma_1 \) and assume that there exists a neighborhood \(N_Q \) of \(Q \) such that \(G_h \cap N_Q \subset G_h^0 \) for \(h \) small enough.

1. Assume that: the coefficients of the operator \(L \) are uniformly continuous in \(N_Q \); \(\lim_{P \to Q} [a_{11}(P)a_{22}(P) - a_{12}^2(P)] > 0 \) and there exists a nondegenerate sphere through \(Q \) whose intersection with \(G \) is the single point \(Q \) and whose center is not on the straight line \(x_1 = x_1^0, x_2 = x_2^0 \).

Then, there exists a strong discrete barrier at \(Q \).

Proof. Let us take the origin of the coordinates at the center of the sphere and let

\[
s = x_1^2 + x_2^2 + t^2, \quad s_0 = s(Q) = (x_1^0)^2 + (x_2^0)^2 + (t^0)^2.
\]

Let \(k \) and \(p \) be positive constants and \(B(P, Q) = k(s^{-p} - s_0^{-p}) \). This is the barrier defined by Jamet [3] for the operator without mixed derivatives, but it can also be defined in the more general case.

This function satisfies condition (2.3a, b). Moreover, we have

\[
LB(P, Q) = 2kps^{-p-2} \left\{ (p + 1)(a_{11}x_1^2 + 2a_{12}x_1x_2 + a_{22}x_2^2) - s(a_{11} + a_{22} + b_1x_1 + b_2x_2 - dt) \right\} - cB(P, Q).
\]

In a certain neighborhood of \(Q \) we have \(x_1^2 > \frac{1}{3}(x_1^0)^2, x_2^2 > \frac{1}{3}(x_2^0)^2 \) and there exists \(\alpha_0 \) such that \(\forall \xi, \eta, a_{11} \xi^2 + 2a_{12} \xi \eta + a_{22} \eta^2 \geq \alpha_0 (\xi^2 + \eta^2) \). Therefore,

\[
LB(P, Q) \geq 2kps^{-p-2} \left\{ (p + 1)\alpha_0 [(x_1^0)^2 + (x_2^0)^2] - s(a_{11} + a_{22} + b_1x_1 + b_2x_2 - dt) \right\}.
\]

It follows that \(LB(P, Q) \) can be made arbitrarily large in \(N_Q \), provided we choose \(k \) and \(p \) large enough. In particular, we can choose \(k \) and \(p \) such that

\[
L_hB(P, Q) + E(P) = LB(P, Q) - c(P) + O(h) > 1
\]

in \(N_Q \), for \(h \) small enough. Thus, \(B(P, Q) \) is a strong discrete barrier at \(Q \).

2. If the coefficients of the operator \(L \) are uniformly continuous in \(N_Q \) and \(L_h \) is consistent with \(L \) in the norm \(C_h(N_Q) \), \(\lim_{P \to Q} [a_{11}(P)a_{22}(P) - a_{12}^2(P)] = 0 \) (but not
all coefficients a_i vanish on the boundary) and there exists a sphere through Q whose
intersection with \tilde{G} is the single point Q and whose center is not in the plane
$a_{11}(Q)(x_1 - x_1^0) + a_{22}(Q)(x_2 - x_2^0) = 0$, then B defined as before is the discrete
barrier in Q.

Proof. Suppose $a_{11}(Q) \neq 0$. In a certain neighborhood of Q we have

$$a_{11}(Q)x_1^2 + 2a_{12}(Q)x_1x_2 + a_{22}(Q)x_2^2 > \frac{1}{2}[a_{11}(Q)(x_1^0)^2 + 2a_{12}(Q)x_1^0x_2^0 + a_{22}(Q)(x_2^0)^2]$$

$$= \frac{a_{11}(Q)x_1^0 + a_{22}(Q)x_2^0}{2a_{11}(Q)} > 0.$$

From this inequality and from (6.1) we deduce that B is the discrete barrier.

3. Assume that the coefficients of the operator L are uniformly continuous and
and L_h is consistent with L in the norm $C_\kappa(N_{\kappa})$. Assume $d(Q) > 0$ and that there
exists a nondegenerate sphere through Q with radius $R > (a_{11}(Q) + a_{22}(Q))/d(Q)$
whose intersection with $\tilde{G} \cap N_Q$ is the single point Q and whose center lies on the
half-line $x_1 = x_1^0, x_2 = x_2^0, t < t^0$.

Then, B, defined as in 1, is a strong discrete barrier.

Proof.

$$LB(P, Q) = 2k_p s^{-\sigma - 1} \left[2(p + 1)(a_{11}x_1^2 + 2a_{12}x_1x_2 + a_{22}x_2^2) \right.$$

$$- s(a_{11} + a_{22} + b_1x_1 + b_2x_2 - dt)] - cB(P, Q)$$

$$> 2k_p s^{-\sigma - 1}[dt - (a_{11} + a_{22} + b_1x_1 + b_2x_2)]$$

$$\rightarrow 2k_p s^{-\sigma - 1}[Rd(Q) - a_{11}(Q) - a_{22}(Q)] > 0.$$

Then, B is a strong discrete barrier.

The two following sufficient conditions are contained in [3].

4. Assume that there exists a neighborhood N_Q of Q such that $G \cap N_Q$ lies in
the half-space $t > t^0$. Assume that the coefficients of the operator L are bounded,
except d which may be unbounded, $d(P) > k(t - t^0)^\sigma, \sigma < 1, k > 0$. Let L_h be the
operator corresponding to formulas (3.3) or (3.8). Then, there exists a strong discrete
barrier at Q.

5. Suppose that there exists a neighborhood N_Q of Q such that $G \cap N_Q$ is a
cylinder parallel to the t-axis. Let us write $L = L_0 - d(\partial/\partial t); L_0$ is an elliptic operator
in space variables. Suppose that there exists a function $B_0(P, Q)$ which does not
depend on t and which is a strong discrete barrier for the family of operators L_{λ} for
any t such that $|t - t^0| < \eta$, where $\eta > 0$ is a constant independent of h_1, h_2. Suppose
$d(P)$ is bounded.

Then, the function $B(P, Q) = KB_0(P, Q) - (t - t^0)^2$ is a strong discrete barrier
for the family $\{L_\lambda\}$.

Example 1. Let $\psi(x_i)$ be a convex function defined for all real x_i and such that
$|\psi(x_i') - \psi(x_i'')|/|x_i' - x_i''| < M$ for all x_i' and $x_i'' \neq x_i'$, where M is a positive constant.
Let C be the curve $Y = x_2 - \psi(x_1) = 0$ in the plane $t = 0$. Let G_0 be a bounded
simply-connected plane domain whose boundary consists of a portion of C and of a
smooth curve which lies entirely in the region $Y > 0$. Let $G = G_0 \times (0, T)$, and
$G_1 = G \cap \{P = (x_1, x_2, t): Y > \epsilon\}$. Let $\Gamma_2 = \{P = (x_1, x_2, T) \in \partial G\}$ and
$\Gamma_1 = \partial G - \Gamma_2$. Let
(6.2) \[L = a_{11} \frac{\partial^2}{\partial x_1^2} + 2a_{12} \frac{\partial^2}{\partial x_1 \partial x_2} + a_{22} \frac{\partial^2}{\partial x_2^2} + b_1 \frac{\partial}{\partial x_1} + b_2 \frac{\partial}{\partial x_2} - \frac{\partial}{\partial t}, \]

where

\[a_{11} - h_1 |a_{12}|/h_2 > q, \quad a_{22} - h_2 |a_{12}|/h_1 > q h_2^2/h_1^3, \]

\[b_1, b_2 \in C^4(G), \quad b_1, b_2 \in C(\mathcal{G}_r), \]

(6.3)

\[[b_2^2(P) + h_3^2 b_2^2(P)/h_2^2]^{1/2} < qk/\gamma + K, \]

\[0 < k < h_2/h_1; \quad K > 0. \]

Let \(L_h \) be the operator defined by formulas (3.2) and (3.3). Then, the problem (1.3) has a unique solution \(u(P) \) and \(v(P, h) \) converges uniformly to \(u(P) \) in \(G \) as \(h \to 0 \).

The proof will be performed for a square net \(h_1 = h_2 = h \); by the transformation of the variables \(x_2 = (h_2/h_1)x_2, \psi(x_1) = (h_2/h_1)\psi(x_1) \), one obtains the general case.

Under our assumptions, \(L_h \) given by (3.2) and (3.3) is positive. For instance, the coefficient

\[A(P, P + e_ih) = (a_{11}(P) - |a_{12}(P)|) \frac{1}{h_2} + b_1(P) \frac{1}{2h} \]

\[\geq \frac{q}{h^2} - \frac{qk}{2h} = \frac{q}{h^2} \left(1 - \frac{kh}{2h} \right) > 0, \]

since at each interior mesh-point there is \(Y > h \).

The existence of discrete barriers at the points \(Q \in \Gamma_1 = \mathcal{E} \times [0, T] \) follows from our third sufficient condition. The discrete barrier for \(|L_{oh}| \) at \(Q = (x_1^0, x_2^0, t^0) \in \mathcal{E} \times [0, T] \) is

\[B_0(P, Q) = -(x_1 - x_1^0)^2 - Y^{1-k}, \quad \text{where} \quad 0 < k < k' < 1. \]

This function has the properties required for the application of our fifth sufficient condition.

The existence of a function \(\varphi(P) \) satisfying condition (i) of Theorem 2.1 follows from the second sufficient condition in Section IV. Theorem 7.1 implies that the solution of problem (1.3) with the operator (6.2) is unique. Therefore, we can apply Theorem 2.1, which concludes the proof.

Example 2. Let \(G_0 \) be a convex domain in the plane \(t = 0 \) such that in the neighborhood of any point \(Q_0 \in \partial G_0, \partial G_0 \) admits a representation of the form \(x_2 = \varphi(x_1) \) or of the form \(x_1 = \psi(x_2) \), where \(\varphi \) and \(\psi \) are convex functions. Let \(G = G_0 \times (0, T), \Gamma_2 = \{ P = (x_1, x_2, T) \in \partial G \} \) and \(\Gamma_1 = \partial G - \Gamma_2 \). Let \(L \) be the operator (6.2), where

\[a_{11} - \frac{h_1}{h_2} |a_{12}| > q, \quad a_{22} - \frac{h_2}{h_1} |a_{12}| > q \frac{h_2^2}{h_1^3}, \quad b_1, b_2 \in C^4(G), \]

(6.4)

\[\forall \ P \in G, \quad \left[b_2^2(P) + \frac{h_2^2}{h_2^2} b_2^2(P) \right]^{1/2} < qk/d(P, \partial G) + K, \]

\[0 < k < h_2/(h_1^2 + h_2^2)^{1/2}; \quad K > 0. \]

Let \(L_h \) be defined by formulas (3.2) and (3.3) and let \(v(P, h) \) be a solution of problem (2.3). Then, the problem (1.3) has a unique solution \(u(P) \) and \(v(P, h) \to u(P) \) uniformly in \(G \) as \(h \to 0 \).
Proof. Same as in Example 1.

VII. Uniqueness of the Solution of the Differential Problem. We denote by \(\Gamma' \) the set of all points \(Q = (x, \ldots, x_n, t^0) \in \partial G \) which admit a neighborhood \(N_0 \) such that \(\partial G \cap N_0 \) lies in the plane \(t = t^0 \), and \(G \cap N_0 \) lies in the half-space \(t < t^0 \). For any \(Q \in G \) we denote by \(S(Q) \) the set of all points \(P \in G \) which can be joined with \(Q \) by a continuous curve lying entirely in \(G \) along which the coordinate \(t \) does not decrease from \(P \) to \(Q \).

Lemma 7.1 (The Maximum Principle for Parabolic Operators). Let \(L \) be a parabolic operator (satisfying conditions (1.2)) whose coefficients are continuous in \(G \). If \(Lu \geq 0 \) (\(Lu \leq 0 \)) in \(G \) and \(u \) has a positive maximum (negative minimum) in \(G \) which is attained at the point \(P_0 \), then \(u(P) = u(P_0) \) for all points \(P \in S(P_0) \).

This theorem is proved in [2].

We deduce at once from the maximum principle the following

Theorem 7.1. If \(\Gamma_2 \subset \Gamma' \), then problem (1.3) has at most one solution.

Theorem 7.2. A necessary condition for the existence of a solution of problem (1.3) for arbitrary \(g \in C(\bar{G}) \) is

\[
\Gamma_1 \cap \bigcup_{Q \in \Gamma_1 \cap \Gamma'} [S(Q)]^c = \emptyset.
\]

Proof. If (7.1) does not hold, then there exists a point \(Q_0 \in \Gamma_1 \cap \Gamma' \) for which \(\Gamma_1 \cap [S(Q_0)]^c \neq \emptyset \). Suppose that \(g_1 \) and \(g_2 \) are functions such that \(g_1(Q_0) - g_2(Q_0) > g_1(Q) - g_2(Q) \) for \(Q \neq Q_0 \) and \(g_1(Q_0) - g_2(Q_0) > 0 \). If

\[
Lu = f \quad \text{and} \quad u_1|_{\Gamma_1} = g_1|_{\Gamma_1}, \quad u_2|_{\Gamma_1} = g_2|_{\Gamma_1},
\]

then \(L(u_1 - u_2) = 0 \) and \((u_1 - u_2)|_{\Gamma_1} = (g_1 - g_2)|_{\Gamma_1} \). It follows from our assumptions that \(u_1(Q) - u_2(Q) = g_1(Q) - g_2(Q) \) for \(Q \in \Gamma_1 \cap [S(Q_0)]^c \). This is a contradiction.

If \(\Gamma' \subset \Gamma_2 \), then the condition (7.1) holds. From now on we will assume \(\Gamma' \subset \Gamma_2 \) and we define \(\Gamma'' = \Gamma_2 - \Gamma' \).

Theorem 7.3. Suppose \(\Gamma'' \) is closed and suppose that there exists a neighborhood \(N \) of \(\Gamma'' \) and a function \(U(P) \) such that

\[
U \in C(G_0 - \Gamma''), \quad U \in C^2(G_0), \quad \text{where } G_0 = G \cap N;
\]

\[
L U(P) \leq 0, \quad P \in G_0;
\]

\[
U(P) \to +\infty \quad \text{as } P \to Q, \quad \forall Q \in \Gamma'' , P \in \bar{G}_0 - \Gamma''.
\]

Then, the problem (1.3) has at most one solution.

The proof is contained in [3].

We give two examples as applications of Theorem 7.3.

Example 3. Let \(G \) lie in the intersection of the half-space \(\sum_{i=1}^{n} \alpha_i x_i > 0 \) and the slab \(t_1 < t < t_2 \). Let \(L \) be the operator (1.1) and assume that there exists a constant \(K \geq 0 \) such that

\[
\sum_{i=1}^{n} \alpha_i b_i(P) \geq \sum_{i=1}^{n} \sum_{i,j=1}^{n} \alpha_i \alpha_j a_{ij}(P) - \left(\sum_{i=1}^{n} \alpha_i x_i \right)^{-1} - K
\]

for all \(P \in G \), and for \(\sum_{i=1}^{n} \alpha_i x_i \) small enough.
Let $\Gamma'' = \partial G \cap \{ P = (x_1, \ldots, x_n, t); \sum_{i=1}^{n} \alpha_i x_i = 0 \}$. Then, problem (1.3) has at most one solution.

Proof. Let

$$U(P) = -K_1 \left(\sum_{i=1}^{n} \alpha_i x_i \right) - \ln \left(\sum_{i=1}^{n} \alpha_i x_i \right), \text{ where } K_1 > K.$$

We have

$$LU(P) = \sum_{i,j=1}^{n} a_{ij}(P) \alpha_i \alpha_j \left(\sum_{i=1}^{n} \alpha_i x_i \right)^{-2} - \sum_{i=1}^{n} b_i(P) \alpha_i \left(K_1 + 1 / \sum_{i=1}^{n} \alpha_i x_i \right) - c U \leq \sum_{i,j=1}^{n} a_{ij}(P) \alpha_i \alpha_j \left[K K_1 + (K - K_1) \left(\sum_{i=1}^{n} \alpha_i x_i \right)^{-1} \right] < 0,$$

if $\sum_{i=1}^{n} \alpha_i x_i \leq (K_1 - K)/KK_1$. Then, the assumptions of Theorem 7.3 are satisfied.

Example 4. Let G lie in the half-space $t > 0$, $\Gamma'' = \partial G \cap \{ P = (x_1, \ldots, x_n, 0) \}$. Suppose that there exists a number $a \in (0, 1]$ such that $d(P) \leq t^a$ and that there exists i such that $a_i(P) > \epsilon$ for t small enough.

Then, problem (1.3) has at most one solution.

Proof. Let $U(P) = -x_i^2 - \ln t$. Then

$$LU(P) = -2a_i(P) + d(P)t^{-1} \leq -2\epsilon + t^{-1} < 0$$

for t sufficiently small. Thus, the assumptions of Theorem 7.3 are satisfied and the solution of problem (1.3) is unique.

Acknowledgment. The author would like to thank Dr. Andrzej Waksulicz for suggesting this problem, for reading the manuscript and for helpful discussions.