The numerical computation of two transcendental functions related to the exponential integral

Author:
D. M. Chipman

Journal:
Math. Comp. **26** (1972), 241-249

MSC:
Primary 65D20

DOI:
https://doi.org/10.1090/S0025-5718-1972-0298885-6

MathSciNet review:
0298885

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Algorithms for the computation of numerical values of the two transcendental functions

**[1]**A. Erdélyi, W. Magnus, F. Oberhettinger & F. Tricomi,*Higher Transcendental Functions*, Vol. 2, McGraw-Hill, New York, 1953, pp. 143-144. MR**15**, 419.**[2]**D. M. Chipman & J. O. Hirschfelder,*J. Chemical Physics*(To appear.)**[3]**Murray Geller and Edward W. Ng,*A table of integrals of the exponential integral*, J. Res. Nat. Bur. Standards Sect. B**73B**(1969), 191–210. MR**0249669****[4]**I. S. Gradšeĭn & I. M. Ryžik,*Tables of Integrals, Series and Products*, Fizmatgiz, Moscow, 1963; English transl., Academic Press, New York, 1965, pp. 574, 334, 532. MR**28**#5198; MR**33**#5952.**[5]**P. Wynn,*The rational approximation of functions which are formally defined by a power series expansion*, Math. Comput.**14**(1960), 147–186. MR**0116457**, https://doi.org/10.1090/S0025-5718-1960-0116457-2

Retrieve articles in *Mathematics of Computation*
with MSC:
65D20

Retrieve articles in all journals with MSC: 65D20

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1972-0298885-6

Keywords:
Integrals of exponential integral,
integrals of logarithm integral,
exponential integral,
logarithm integral

Article copyright:
© Copyright 1972
American Mathematical Society