Tridiagonalization of Completely Nonnegative Matrices*

By J. W. Rainey and G. J. Habetler

Abstract. Let \(M = [m_{ij}]_{i,j=1}^{n} \) be completely nonnegative (CNN), i.e., every minor of \(M \) is nonnegative. Two methods for reducing the eigenvalue problem for \(M \) to that of a CNN, tridiagonal matrix, \(T = [t_{ij}] \) \((t_{ij} = 0 \) when \(|i - j| > 1 \)), are presented in this paper. In the particular case that \(M \) is nonsingular it is shown for one of the methods that there exists a CNN nonsingular \(S \) such that \(SM = TS \).

1. Introduction. It is well known that if \(M = [m_{ij}]_{i,j=1}^{n} \) is Hermitian, there exists an orthogonal \(Q \) such that \(QMQ^* = T \) is tridiagonal, i.e., \(t_{ij} = 0 \) when \(|i - j| > 1 \). Moreover, for \(\lambda > 0 \) sufficiently large and some nonsingular, diagonal \(D \), \(D(T + \lambda I)D^{-1} \) is completely nonnegative (CNN), i.e., every minor of \(D(T + \lambda I)D^{-1} \) is nonnegative. (See [2], [3] for a discussion and applications of CNN matrices.) We want to show that an analogous result can be obtained when \(M \) is CNN. Namely, we will show that given any arbitrary CNN matrix, \(M \), one can easily construct a CNN tridiagonal matrix, \(T \), which has the same eigenvalues as \(M \). Two methods for obtaining \(T \) are described in Section 2, both methods being based upon a result derived in Section 3.

2. Outline of the Methods. (a) First Method. If for some \(k \) \((2 \leq k \leq n - 1) \),

\[
(2.1) \quad m_{ii} = 0 \quad (m_{ii} = 0), \quad i = 1, \ldots, k - 1, \quad j = i + 2, \ldots, n,
\]

we will say that \(M \) is "lower (upper) Hessenberg through its first \(k \) rows (columns)." For convenience, we will say that any matrix is Hessenberg through its first row or column. A matrix is Hessenberg in the case \(k = n - 1 \).

In Section 3, we prove the

Basic Lemma. Let \(M \) be lower Hessenberg through its first \(k \) rows. Then, there exists a CNN matrix, \(M' \), which has the same eigenvalues as \(M \) and which is lower Hessenberg through its first \(k + 1 \) rows. If \(M \) is nonsingular, then there exists a CNN nonsingular \(S' \) such that \(S'M = M'S' \).

By a sequential application of the Basic Lemma, it follows that we can find a CNN lower Hessenberg matrix, \(H \), which has the same eigenvalues as \(M \). We note that if \(M \) is nonsingular then \(H = S''M(S'')^{-1} \), where \(S'' \) is CNN (from, e.g., the Cauchy-Binet theorem [2, I]).

Let \(P \) be the matrix obtained by reversing the order of the rows of the \(n \times n \) identity, \(I \); trivially, \(P^{-1} = P \).

Received January 11, 1971, revised May 24, 1971.

Key words and phrases. Tridiagonalization, tridiagonal matrices, completely nonnegative matrices, Hessenberg matrices.

* Part of this paper appeared in J. W. Rainey's dissertation (Rensselaer, 1967). Research on the dissertation was supported in part by funds from the National Science Foundation under Grant NSF-GP-6339.

Copyright © 1972, American Mathematical Society

121
Define $\hat{H} = PHP$. \hat{H} is similar to H and therefore has the same eigenvalues as M. \hat{H} is obtained by reversing the order of the rows and columns of H and therefore is upper Hessenberg; since the value of a minor is not changed by reversing the order of the rows and columns of its array form, \hat{H} must be CNN.

As we indicate in Section 3, a sequential application of our method of proof of the Basic Lemma to \hat{H} maintains the upper Hessenberg form of \hat{H} and therefore yields a CNN tridiagonal matrix, \hat{T}. In general, we could take $T = \hat{T}$. In the particular case that M, and therefore H, is nonsingular, we note as before that there exists a nonsingular CNN S such that $\hat{T} = SH(S)^{-1}$; defining

$$T = P\hat{T}P = P\hat{H}(\hat{S})^{-1}P = P\hat{S}PH(\hat{S})^{-1}P = P\hat{S}PS''M(S'')^{-1}P(\hat{S})^{-1}P = SM\hat{S}^{-1}$$

where $S = P\hat{S}PS''$, it is easily verified that T is tridiagonal, CNN, and that S (the product of the CNN matrices, $P\hat{S}$ and S'') is CNN.

(b) Second Method. If, for some $k (2 \leq k \leq n - 1)$,

$$m_{ii} = m_{jj} = 0, \quad i = 1, \cdots, k - 1, \quad j = i + 2, \cdots, n,$$

we will say that M is “tridiagonal through its first k rows and columns.” For convenience, we will say that any square matrix is tridiagonal through its first row and column. A matrix is tridiagonal in the case $k = n - 1$. We want to prove the

SEQUENTIAL LEMMA. Let M be tridiagonal through its first $k (<n - 1)$ rows and columns. Then there exists a CNN matrix \bar{M} which has the same eigenvalues as M and which is tridiagonal through its first $k + 1$ rows and columns.

Proof. Applying the method of proof of the Basic Lemma to M yields M' which is tridiagonal through its first k rows and columns and lower Hessenberg through its first $k + 1$ rows.

Since every minor of the transpose $(M')^t$ of M' will be the transpose of some minor of M', we note that $(M')^t$ is CNN. Moreover, $(M')^t$ has the same eigenvalues as M, is tridiagonal through its first k rows and columns and is upper Hessenberg through its first $k + 1$ columns. Applying the method of proof of the Basic Lemma to $(M')^t$ would now yield \bar{M}.

The proof of the preceding lemma indicates a method of “sequentially tridiagonalizing” (a term introduced in [1]) M with, as we will show, the desirable property that each intermediate result of the procedure is CNN.

Let $M^{(k)} = \{m_{ij}^{(k)}\}_{i,j=1}^{n}$ be the $(k - 1)$th result of applying the sequential tridiagonalization procedure to M (in general, $M^{(1)} = M$, $M^{(n-1)} = T$). In analogy with (2.2), we can assume that

$$m_{ii}^{(k)} = m_{jj}^{(k)} = 0, \quad i = 1, \cdots, k - 1, \quad j = i + 2, \cdots, n.$$

As shown in [4, p. 399 ff.], a measure of the stability of the procedure (but by no means the most important measure) is the growth of the quantities

$$\rho_k = \sum_{i=k+1}^{n} m_{ii}^{(k)} m_{ij}^{(k)},$$

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
where the \(\rho_k \) (see, e.g., [1]) also satisfy
\[
(2.5) \quad \rho_k = t_{k+1,k} t_{k,k+1}, \quad k = 1, \ldots, n - 1.
\]

We want to show that the \(\rho_k \) cannot become arbitrarily large.

First of all, we note that \(M^{(k)} (k > 1) \) is obtained by similarity transformations performed on either \(M^{(k-1)} \) or on a "reduced" form of \(M^{(k-1)} \); in either case, \(\text{trace}(M^{(k)}) = \text{trace}(M^{(k-1)}) \) and, therefore, \(\text{trace}(M) = \text{trace}(M^{(k)}) \) for all \(k \).

Now, since \(M^{(k)} \) is CNN,
\[
\begin{array}{c}
m_{kk}^{(k)} m_{ij}^{(k)} \geq m_{kj}^{(k)} m_{ik}^{(k)} \geq 0, \quad j \geq k + 1, \\
\end{array}
\]
and, therefore,
\[
m_{kk}^{(k)} \sum_{j=k+1}^{n} m_{ij}^{(k)} \geq \rho_k \geq 0,
\]
or, since \(\text{trace}(M) = \text{trace}(M^{(k)}) = \sum_{i=1}^{n} m_{ii}^{(k)} \),
\[
0 \leq \rho_k \leq (\text{trace}(M))^2.
\]

By maintaining the CNN property in our procedure, we are assured that the \(\rho_k \) remain uniformly bounded with respect to \(k \).

We note that if \(M^{(1)} \) is nonsingular, then \(M^{(n-1)} = T \) is similar to \(M^{(1)} \); letting "\(\sim \)" indicate similarity, we have, in the notation of the Sequential Lemma, \(M \sim M' \sim (M')' \sim \tilde{M} \) (since any square matrix is similar to its transpose) and by induction, \(M^{(1)} \sim T \). Thus, \(T = SM^{(1)} S^{-1} \) for some \(S \) but the \(S \) "constructed" as in the proof of the Basic and Sequential Lemmas is not, in general, CNN. For example, if
\[
M = \begin{bmatrix}
3 & 1 & 1 \\
2 & 2 & 2 \\
1 & 3 & 4
\end{bmatrix},
\]
then, following the procedure indicated on the proof of the Sequential Lemma, one obtains
\[
T = \begin{bmatrix}
3 & 2 & 0 \\
1 & 5.5 & .75 \\
0 & 1 & .5 \\
1 & 0 & 0 \\
0 & .5 & .5 \\
0 & -1 & 1
\end{bmatrix},
\]
\[
S = \begin{bmatrix}
1 & 0 & 0 \\
0 & .5 & .5 \\
0 & 1 & 1
\end{bmatrix}.
\]
The question of whether or not there exists, in the general case, some CNN \(S \) such that \(T = SMS^{-1} \) remains open.

3. Proof of the Basic Lemma. Let \(M \) be CNN and lower Hessenberg through its first \(k \) rows but not through its first \(k + 1 \) rows. Then, there exists \(p \geq k + 1 \) such that
\[M = \begin{bmatrix}
X & \cdots & X & 0 & \cdots & 0 \\
\vdots & \ddots & \ddots & \vdots & \ddots & \vdots \\
\vdots & & \ddots & \ddots & \ddots & \vdots \\
0 & \cdots & 0 & u & v & 0 & \cdots & 0 \\
X & \cdots & \cdots & X
\end{bmatrix},\]

where the \(X \)'s indicate possibly nonzero elements, \(u = m_{k,p} \) and \(v = m_{k,p+1} \neq 0 \).

Note. We indicate in (3.1) that \(p + 1 < n \) and \(k > 1 \); whether or not this is true will make no difference in our argument.

We assert that we can verify our primary statement in the lemma by showing that there exists a CNN matrix, say \(\tilde{M} \), which has precisely the same form as \(M \) in (3.1) and the same eigenvalues, but \(\xi = 0 \), and then calling on finite induction. We proceed with the proof of the latter.

Consider first the case when \(u = m_{kp} = 0 \). From the latter assumption, (3.2) and the fact that \(u \cdot m_{i,p+1} - v \cdot m_{i,p} \geq 0 \) when \(i \geq k \), it follows that the \(p \)th column of \(M \) must be null. By a similarity transformation involving elementary permutation matrices, one can therefore obtain

\[M' = \begin{bmatrix}
M'_1 & 0 \\
m'_1 & 0
\end{bmatrix},\]

where \(M'_1 \) is obtained by deleting the \(p \)th row and column of \(M \) while \(m'_1 \) is obtained by deleting the \(p \)th column of the \(p \)th row of \(M \). Now, \(M'_1 \) would not, in general, be CNN but

\[\tilde{M} = \begin{bmatrix}
M'_1 & 0 \\
0 & 0
\end{bmatrix} \]

is easily shown to be CNN; moreover, since \(M' \) and \(M \) are similar, \(\tilde{M} \) must have the same eigenvalues as \(M \). Finally, from our description of \(M'_1, \tilde{M} \) evidently has the desired form.

Now, suppose that \(u \neq 0 \). We can, therefore, use \(u \) to eliminate \(v \) by an “elementary column operation”; in particular, let

\[S^{-1} = I - \frac{v}{u}E_pE_{p+1}^\dagger, \]

where \(I \) is the \(n \times n \) identity and \(E_i \) is the \(i \)th column of \(I \). We want to show that we may choose

\[\tilde{M} = SMS^{-1}, \]

where

\[S = I + \frac{v}{u}E_pE_{p+1}^\dagger. \]

Since \(p \geq k + 1 \), it is evident that \(\tilde{M} \) has the desired form; it remains now to show
that \(\tilde{M} \) is CNN. Since \(S \) is evidently CNN, we can and will verify the latter by showing that \(M' = MS^{-1} \) is CNN. Note that if \(M_i \) is the \(i \)th column of \(M \), then

\[
M' = [M_1 \cdots M_p M_{p+1} - (v/u)M_p M_{p+2} \cdots M_n].
\]

In showing that \(M' \) is CNN, we assert that we need only consider those minors, of which, say, \(\mu \) is an example, which satisfy the following conditions:

(a) \(\mu \) depends upon elements of the \((p + 1)\)th column of \(M' \) but not upon elements of the \(p \)th column.

(b) If \(\mu \) depends upon elements of the first \(k - 1 \) rows of \(M' \), then \(\mu \) depends upon elements of the first \(p - 1 \) columns.

If \(\mu \) did not satisfy (a), then by inspection of (3.1) and (3.4), \(\mu \) would be numerically equal to a minor of \(M' \); if \(\mu \) did not satisfy (b), then by inspection, \(\mu \) depends upon a null row of \(M \). In either of the latter cases, \(\mu \) would be nonnegative.

For brevity in the following, we introduce the Gantmacher notation: \(A(\alpha \beta \cdots) \) is that submatrix of the matrix \(A \) composed of elements from rows \(\alpha, \beta, \cdots \) and columns \(a, b, \cdots \) while \(\tilde{A}(\alpha \beta \cdots) \) is obtained by deleting row \(\alpha, \beta, \cdots \) and column \(a, b, \cdots \) from \(A \). Also, \(A(\cdot \cdot \cdot) = \det \{A(\cdot \cdot \cdot)\} \) and \(\tilde{A}(\cdot \cdot \cdot) = \det \{\tilde{A}(\cdot \cdot \cdot)\} \).

Let \(\mu \) be a minor of \(M' \) satisfying conditions (a) and (b), e.g.,

\[
\mu = M'[\alpha \beta \cdots c p + 1 d \cdots],
\]

where \(\alpha < \beta < \cdots \) and \(a < b < \cdots < c < p + 1 < d < \cdots \) and \(c \neq p \).

Note. Those minors of \(M' \) which depend only upon the columns, \(M'_i, i \geq p + 1 \), will be simple special cases of the following.

Now, from (3.4), (3.5) and a well-known determinantal property,

\[
\mu = M' \begin{bmatrix} \alpha \beta & \cdots & c & p & + & 1 & d & \cdots \\ a & b & \cdots & c & p & + & 1 & d & \cdots \end{bmatrix} - (v/u)M' \begin{bmatrix} \alpha & \beta & \cdots & c & p & + & 1 & d & \cdots \\ a & \cdots & c & p & + & 1 & d & \cdots \end{bmatrix},
\]

(3.6)

\[
= u^{-1}vM' \begin{bmatrix} \alpha & \beta & \cdots & c & p & + & 1 & d & \cdots \\ a & \cdots & c & p & + & 1 & d & \cdots \end{bmatrix} - vM' \begin{bmatrix} \alpha & \beta & \cdots & c & p & + & 1 & d & \cdots \\ a & \cdots & c & p & + & 1 & d & \cdots \end{bmatrix}.
\]

Let

\[
A = M' \begin{bmatrix} \alpha & \beta & \cdots & \gamma & k & \delta & \cdots \\ a & \cdots & c & p & + & 1 & d & \cdots \end{bmatrix},
\]

(3.7)

where, say, \(\gamma < k \leq \delta \).

Note. If \(\alpha > k \), then the first row of \(A \) would be composed of elements from the \(k \)th row of \(M' \); as will be seen, we lose no generality by supposing \(k > \alpha \).

For reference, we suppose that \(a_{i \cdot} = m_{i \cdot p} \). Then, from (3.6) and (3.7),

\[
\mu = v^{-1} \{a_{i \cdot} \tilde{A} \begin{bmatrix} t \\ i \end{bmatrix} - a_{i \cdot i+1} \tilde{A} \begin{bmatrix} t \\ i + 1 \end{bmatrix} \}.
\]

Thus, we must show that the quantity in brackets is nonnegative.

From (3.1) and (3.7),
where \(u' = a_{i,i} \), \(v' = a_{i,i+1} \). Since, with the possible exception of a “repeated” row, \(\mathbf{A} \) is a submatrix of \(\mathbf{M} \), \(\mathbf{A} \) is evidently \(\text{CNN} \). We require two lemmas, the second of which will readily imply that \(\mu \), as defined by (3.8), must be nonnegative when \(v > 0 \) and \(\mathbf{A} \) is \(\text{CNN} \) and has the form noted in (3.9).

The following lemma was proved in [3, p. 309]; for completeness, we offer a proof which does not require certain special results derived in [3].

Lemma 1. Let \(\mathbf{A} \) be \(\text{CNN} \). Then, for \(1 \leq p \leq n \),

\[
(-1)^{p+1} \sum_{i=2}^{n} (-1)^{i+1} a_{i,i} \mathbf{A}_{i}^{1} \geq 0.
\]

Proof. In the case \(p = 1 \), the left-hand side of (3.10) is just \(\det(\mathbf{A}) \); in the case \(p = n \), the left-hand side reduces to \(a_{n} \mathbf{A}_{n}^{1} \). Since \(\mathbf{A} \) is \(\text{CNN} \), (3.1) is evidently valid for these cases.

Assume now that \(1 < p < n \). Let \(s \) and \(i \) be chosen such that \(1 \leq s < p < i \leq n \) and suppose that, for all such pairs \((s, i)\) and all \(k \) such that \(2 \leq k \leq n \),

\[
\mathbf{A}_{i}^{k} = 0.
\]

Then, for all \(i > p \),

\[
\mathbf{A}_{i}^{k} = \sum_{s=2}^{n} (-1)^{k+s-1} a_{s,i} \mathbf{A}_{s}^{1} = 0
\]

and (3.10) would reduce to the known inequality, \(a_{s} \mathbf{A}_{s}^{1} \geq 0 \).

Assume that for some choice of \(s \), \(i \), and \(k \), restricted as above, that

\[
\mathbf{A}_{s}^{k} = 0.
\]

Let \(\mathbf{N} \) be the matrix obtained when the elements \(m_{1}, m_{2}, \cdots, m_{p-1} \) of \(\mathbf{A} \) are replaced by zeros. (3.10) is then equivalent to the assertion that

\[
(-1)^{p+1} \det(\mathbf{N}) \geq 0.
\]

(3.12) is evidently true when \(n = 2 \); we make the usual inductive hypothesis that (3.12) is valid for all \(\mathbf{N} \) of dimension less than \(n \). Now, from Sylvester’s identity (see, e.g., [2, p. 33]),

\[
\det(\mathbf{N}) \mathbf{R}_{i}^{k} = \mathbf{R}_{i}^{k} \mathbf{R}_{s}^{k} - \mathbf{R}_{i}^{k} \mathbf{R}_{s}^{k}.
\]
or since all rows, except the first, of A and N are identical and noting (3.11),

$$\det(N) = \left(A \begin{bmatrix} 1 & k \\ s & i \end{bmatrix} \right)^{-1} \left(A \begin{bmatrix} 1 & k \\ s & i \end{bmatrix} N \begin{bmatrix} k \\ s \end{bmatrix} - A \begin{bmatrix} 1 \\ s \end{bmatrix} N \begin{bmatrix} k \\ s \end{bmatrix} \right).$$

Now \tilde{N}_1^i (and \tilde{N}_2^i) can be obtained by replacing the first $p-1$ (and $p-2$) elements of the first row of A_1^i (and A_2^i) with zeros; by the inductive hypothesis

$$(-1)^{p+1} N_i^k \geq 0, \quad (-1)^{(p-1)+1} N_s^k \geq 0.$$

(3.12), and therefore (3.10), now follow readily from (3.13) and (3.14) and the fact that A is CNN which completes our proof.

The following lemma now generalizes the result of Lemma 1 for the case that A has a form such as in (3.9).

Lemma 2. Suppose that A is CNN and that

$$a_{ii} = 0, \quad i = 1, \ldots, t - 1, j = s, \ldots, n,$$

for some s and t satisfying $1 \leq s$, $t \leq n$. Then, for $p \geq s$,

$$(-1)^{t+p} \sum_{i=p}^{n} (-1)^{t+i} a_{ii} \tilde{A}_i^t \geq 0.$$

Proof. Assume initially that $s > t - 1$. Define

$$r_{ii} = A \begin{bmatrix} 1 & \cdots & t - 1 & i + t - 2 \\ 1 & \cdots & t - 1 & j + t - 1 \end{bmatrix}$$

and let $R = [r_{ii}]^{t-1}_{i=t-1}$.

Again utilizing Sylvester's identity,

$$R \begin{bmatrix} e & \eta & \cdots & \rho \\ e & f & \cdots & g \end{bmatrix} = \Delta^{t-1} A \begin{bmatrix} 1 & \cdots & t - 1 & e + t - 1 & \cdots & \rho + t - 1 \\ 1 & \cdots & t - 1 & e + t - 1 & \cdots & g + t - 1 \end{bmatrix},$$

presuming that the latter minor is qth order and

$$\Delta = A \begin{bmatrix} 1 & \cdots & t - 1 \\ 1 & \cdots & t - 1 \end{bmatrix}.$$

Evidently, R is CNN. From Lemma 1, then follows

$$(-1)^{t+1} \sum_{j=s}^{n-(t-1)} (-1)^{t+j} r_{ii} R \begin{bmatrix} 1 \\ j \end{bmatrix} \geq 0,$$

whenever $1 \leq q \leq n - (t - 1)$.

Now, from (3.15) and (3.17),

$$r_{ii} = A \begin{bmatrix} 1 & \cdots & t - 1 & t \\ 1 & \cdots & t - 1 & j + t - 1 \end{bmatrix} = a_{i,i+t-1} \Delta,$$

whenever $j \geq s - (t - 1)$; from (3.18),

$$R \begin{bmatrix} 1 \\ j \end{bmatrix} = \Delta^{t-1} A \begin{bmatrix} 1 \\ j + t - 1 \end{bmatrix}.$$
Utilizing these last two relations and (3.19) yields, after some simplification,
\[(3.20) \quad A'(-t')c'(-t') + i(t')c'(-t') = 0,\]
whenever \(p \geq s > t - 1\). If \(\Delta > 0\), then (3.20) reduces to (3.16). Suppose, however, that \(\Delta = 0\); the inequality
\[(3.21) \quad A[t - j] \leq \Delta A[1 \ldots t - 1 \ldots j], \quad j > t - 1,\]
is a special case of a result due to [2, II, p. 100]. Evidently, \(\Delta = 0\) would imply the equality in (3.16) for the case \(j \geq p \geq s > t - 1\).

Finally, suppose that \(s \leq t - 1\). Then, \(A[i^t] = 0\), since \(A[i^t] = 0\) has a column of zeros. Then, as in (3.21),
\[A[t - j] \leq A[1 \ldots s]A[1 \ldots s \ldots j] = 0, \quad j > s.\]
Therefore, (3.16) either reduces to an equality (when \(p > s\)) or to the known inequality, \(A[i^t] \geq 0\) (when \(p = s\)). This completes our proof of the lemma.

From (3.9) and (3.16), then follows
\[0 \leq (-1)^{t+1} \sum_{k=1}^{n} (-1)^{t+i} a_{t, i} A[t], \]
and therefore, from (3.8), \(\mu \geq 0\), which completes our proof of the primary assertion of the Basic Lemma.

Noting that we choose \(\tilde{M}\) similar to \(M\) as long as \(M\) does not have a column of zeros, the second assertion of the Basic Lemma is now obvious.

Finally, as in all elementary similarity transformations of the form (3.3), \(\tilde{M}\) will be upper Hessenberg as long as \(M\) is upper Hessenberg.

Department of Mathematics
University of Tulsa
Tulsa, Oklahoma 74104

Department of Mathematics
Rensselaer Polytechnic Institute
Troy, New York 12181