Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)



Tridiagonalization of completely nonnegative matrices

Authors: J. W. Rainey and G. J. Habetler
Journal: Math. Comp. 26 (1972), 121-128
MSC: Primary 65F15
MathSciNet review: 0309290
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ M = [{m_{ij}}]_{i,j = 1}^n$ be completely nonnegative (CNN), i.e., every minor of $ M$ is nonnegative. Two methods for reducing the eigenvalue problem for $ M$ to that of a CNN, tridiagonal matrix, $ T = [{t_{ij}}]$ ( $ {t_{ij}} = 0$ when $ \vert i - j\vert > 1)$), are presented in this paper. In the particular case that $ M$ is nonsingular it is shown for one of the methods that there exists a CNN nonsingular $ S$ such that $ SM = TS$.

References [Enhancements On Off] (What's this?)

  • [1] F. L. Bauer, Sequential reduction to tridiagonal form, J. Soc. Indust. Appl. Math. 7 (1959), 107–113. MR 0100345
  • [2] F. R. Gantmacher, The theory of matrices. Vols. 1, 2, Translated by K. A. Hirsch, Chelsea Publishing Co., New York, 1959. MR 0107649
  • [3] F. R. Gantmacher & M. G. KREĬN, Oscillating Matrices and Kernels and Small Oscillations of Mechanical Systems, 2nd ed., GITTL, Moscow, 1950; German transl., AkademieVerlag, Berlin, 1960. MR 14, 178; MR 22 #5161.
  • [4] J. H. Wilkinson, The algebraic eigenvalue problem, Clarendon Press, Oxford, 1965. MR 0184422

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 65F15

Retrieve articles in all journals with MSC: 65F15

Additional Information

Keywords: Tridiagonalization, tridiagonal matrices, completely nonnegative matrices, Hessenberg matrices
Article copyright: © Copyright 1972 American Mathematical Society

American Mathematical Society