A note on the evaluation of the complementary error function

Authors:
D. B. Hunter and T. Regan

Journal:
Math. Comp. **26** (1972), 539-541

MSC:
Primary 65D20

MathSciNet review:
0303685

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A modification is proposed to a method of Matta and Reichel for evaluating the complementary error function of a complex variable, so as to improve the numerical stability of the method in certain critical regions.

**[1]**C. Chiarella and A. Reichel,*On the evaluation of integrals related to the error function*, Math. Comp.**22**(1968), 137–143. MR**0223068**, 10.1090/S0025-5718-1968-0223068-4**[2]**Henry E. Fettis,*Numerical calculation of certain definite integrals by Poisson’s summation formula*, Math. Tables Aids Comput.**9**(1955), 85–92. MR**0072546**, 10.1090/S0025-5718-1955-0072546-0**[3]**D. B. Hunter, ``The evaluation of a class of functions defined by an integral,''*Math. Comp.*, v. 22, 1968, pp. 440-444.**[4]**Yudell L. Luke,*Simple formulas for the evaluation of some higher transcendental functions*, J. Math. and Phys.**34**(1956), 298–307. MR**0078047****[5]**F. Matta and A. Reichel,*Uniform computation of the error function and other related functions*, Math. Comp.**25**(1971), 339–344. MR**0295538**, 10.1090/S0025-5718-1971-0295538-4

Retrieve articles in *Mathematics of Computation*
with MSC:
65D20

Retrieve articles in all journals with MSC: 65D20

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1972-0303685-4

Keywords:
Complementary error function,
numerical integration,
trapezoidal rule,
mid-ordinate rule

Article copyright:
© Copyright 1972
American Mathematical Society