Norms on direct sums and tensor products
Authors:
P. Lancaster and H. K. Farahat
Journal:
Math. Comp. 26 (1972), 401-414
MSC:
Primary 46M05
DOI:
https://doi.org/10.1090/S0025-5718-1972-0305099-X
MathSciNet review:
0305099
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: We first consider the construction of a norm on a direct sum of normed linear spaces and call a norm absolute if it depends only on the norms of the component spaces. Several characterizations are given of absolute norms. Absolute norms are then used to construct norms on tensor products of normed linear spaces and on tensor products of operators on normed linear spaces.
- [1] F. L. Bauer, J. Stoer & C. Witzgall, ``Absolute and monotonic norms,'' Numer. Math., v. 3, 1961, pp. 257-264. MR 23 #B3136. MR 0130104 (23:B3136)
- [2] N. Dunford & J. T. Schwartz, Linear Operators. I: General Theory, Pure and Appl. Math., vol. 7, Interscience, New York, 1958. MR 22 #8302. MR 0117523 (22:8302)
- [3] A. M. Ostrowski, ``On some metrical properties of operator matrices and matrices partitioned into blocks,'' J. Math. Anal. Appl., v. 2, 1961, pp. 161-209. MR 24 #A421. MR 0130561 (24:A421)
- [4] R. Schatten, A Theory of Cross-Spaces, Ann. of Math. Studies, no. 26, Princeton Univ. Press, Princeton, N. J., 1950. MR 12, 186. MR 0036935 (12:186e)
Retrieve articles in Mathematics of Computation with MSC: 46M05
Retrieve articles in all journals with MSC: 46M05
Additional Information
DOI:
https://doi.org/10.1090/S0025-5718-1972-0305099-X
Article copyright:
© Copyright 1972
American Mathematical Society