Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

On evaluation of moments of $ K\sb{\nu }(t)/I\sb{\nu }(t)$


Authors: Chih Bing Ling and Jung Lin
Journal: Math. Comp. 26 (1972), 529-537
MSC: Primary 65D20
DOI: https://doi.org/10.1090/S0025-5718-1972-0305553-0
MathSciNet review: 0305553
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: This paper presents a method of evaluation of the moments of $ {K_\nu }(t)/{I_\nu }(t)$. Two pairs of expressions, each consisting of two series, are obtained according to the index being an even or an odd integer. The method is an extension of the method used by Watson. Values are tabulated to 12D for $ \nu = 0(1)2$.


References [Enhancements On Off] (What's this?)

  • [1] J. A. Roberts, ``Computation of moments of $ {K_\nu }(t)/{I_\nu }(t)$,'' Math. Comp., v. 19, 1965, pp. 651-654.
  • [2] G. N. Watson, ``The use of series of Bessel functions in problems connected with cylindrical wind-tunnels,'' Proc. Roy. Soc. London Ser. A, v. 130, 1930, pp. 29-37.
  • [3] C. B. Ling & J. Lin, ``A new method of evaluation of Howland integrals,'' Math. Comp., v. 25, 1971, pp. 331-337. MR 0295537 (45:4603)
  • [4] C. B. Ling & J. Lin, ``A table of sine integral $ {\text{Si}}(n\pi /2)$,'' Math. Comp., v. 25, 1971, p. 402 (Review.)
  • [5] H. T. Davis & W. J. Kirkham, ``A new table of zeros of Bessel functions $ {J_0}(x)$ and $ {J_1}(x)$ with corresponding values of $ {J_1}(x)$ and $ {J_0}(x)$,'' Bull. Amer. Math. Soc., v. 33, 1927, pp. 760-772; Erratum: $ {J_1}({j_{0,4}})$, for 98214 read 98314.
  • [6] British Association Mathematical Tables. Vol. 6. Bessel Functions, Cambridge Univ. Press, Cambridge, 1958, pp. 171-173.
  • [7] Royal Society Mathematical Tables. Vol. 7. Bessel Functions. Part III. Zeros and Associated Values, Cambridge Univ. Press, Cambridge, 1960. MR 0119441 (22:10202)
  • [8] H. Brenner & R. M. Sonshine, ``Slow viscous rotation of a sphere in a circular cylinder,'' Quart. J. Mech. Appl. Math., v. 17, 1964, pp 55-63.
  • [9] W. R. Smythe, ``Charged spheroid in cylinder,'' J. Mathematical Phys., v. 4, 1963, pp. 833-837. MR 26 #7304. MR 0149819 (26:7304)
  • [10] C. B. Ling, ``Torsion of a circular cylinder having a spherical cavity,'' Quart. Appl. Math., v. 10, 1952, pp. 149-156. MR 13, 886. MR 0047498 (13:886b)
  • [11] I. N. Sneddon, Mixed Boundary Value Problems in Potential Theory, North-Holland, Amsterdam; Interscience, New York, 1966. MR 35 #6853. MR 0216018 (35:6853)
  • [12] G. N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge Univ. Press, Cambridge; Macmillan, New York, 1944. MR 6, 64. MR 0010746 (6:64a)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 65D20

Retrieve articles in all journals with MSC: 65D20


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1972-0305553-0
Keywords: Moments of $ {K_\nu }(t)/{I_\nu }(t)$
Article copyright: © Copyright 1972 American Mathematical Society

American Mathematical Society