Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

   
Mobile Device Pairing
Green Open Access
Mathematics of Computation
Mathematics of Computation
ISSN 1088-6842(online) ISSN 0025-5718(print)

 

Some results for $ k\,!\pm 1$ and $ 2\cdot 3\cdot 5\cdots p\pm 1$


Author: Alan Borning
Journal: Math. Comp. 26 (1972), 567-570
MSC: Primary 10-04
MathSciNet review: 0308018
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The numbers $ k! \pm 1$ for $ k = 2(1)100$, and $ 2 \cdot 3 \cdot 5 \cdots p \pm 1$ for $ p$ prime, $ 2 \leqq p \leqq 307$, were tested for primality. For $ k = 2(1)30$, factorizations of $ k! \pm 1$ are given.


References [Enhancements On Off] (What's this?)

  • [1] D. H. Lehmer, Computer technology applied to the theory of numbers, Studies in Number Theory, Math. Assoc. Amer. (distributed by Prentice-Hall, Englewood Cliffs, N.J.), 1969, pp. 117–151. MR 0246815 (40 #84)
  • [2] W. Sierpinski, Elementary Theory of Numbers. Parts I, II, Monografie Mat., Tom 19, 38, PWN, Warsaw, 1950, 1959; English transl., Monografie Mat., Tom 42, PWN, Warsaw, 1964, p. 202. MR 13, 821; MR 22 #2572; MR 31 #116.
  • [3] M. Kraitchik, Introduction à la théorie des nombres, Gauthier-Villars, Paris, 1952 (French). MR 0051845 (14,535a)
  • [4] John Brillhart and J. L. Selfridge, Some factorizations of 2ⁿ±1 and related results, Math. Comp. 21 (1967), 87-96; corrigendum, ibid. 21 (1967), 751. MR 0224532 (37 #131)
  • [5] Donald E. Knuth, The art of computer programming. Vol. 2, 2nd ed., Addison-Wesley Publishing Co., Reading, Mass., 1981. Seminumerical algorithms; Addison-Wesley Series in Computer Science and Information Processing. MR 633878 (83i:68003)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 10-04

Retrieve articles in all journals with MSC: 10-04


Additional Information

DOI: http://dx.doi.org/10.1090/S0025-5718-1972-0308018-5
PII: S 0025-5718(1972)0308018-5
Keywords: Prime, factorial, product of primes, factorizations
Article copyright: © Copyright 1972 American Mathematical Society