Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Coupled harmonic equations, SOR, and Chebyshev acceleration


Author: L. W. Ehrlich
Journal: Math. Comp. 26 (1972), 335-343
MSC: Primary 65N10
DOI: https://doi.org/10.1090/S0025-5718-1972-0311128-X
MathSciNet review: 0311128
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A coupled pair of harmonic equations is solved by the application of Chebyshev acceleration to the Jacobi, Gauss-Seidel, and related iterative methods, where the Jacobi iteration matrix has purely imaginary (or zero) eigenvalues. Comparison is made with a block SOR method used to solve the same problem.


References [Enhancements On Off] (What's this?)

  • [1] B. L. Buzbee, G. H. Golub & C. W. Nielson, ``On direct methods for solving Poisson's equations,'' SIAM J. Numer. Anal., v. 7, 1970, pp. 627-656. MR 0287717 (44:4920)
  • [2] R. Colony & R. R. Reynolds, An Application of Hockney's Method for Solving Poisson's Equation, Spring Joint Computer Conference (Atlantic City, N.J.), AFIPS Press, Montvale, N.J., 1970, pp. 409-416.
  • [3] L. W. Ehrlich, ``The block symmetric successive overrelaxation method,'' J. Soc. Indust. Appl. Math., v. 12, 1964, pp. 807-826. MR 33 #5134. MR 0196950 (33:5134)
  • [4] L. W. Ehrlich, ``Solving the biharmonic equation as coupled finite difference equations,'' SIAM J. Numer. Anal., v. 8, 1971, pp. 278-287. MR 0288972 (44:6167)
  • [5] G. H. Golub & R. S. Varga, ``Chebyshev semi-iterative methods, successive overrelaxation iterative methods, and second order Richardson iterative methods. I,'' Numer. Math., v. 3, 1961, pp. 147-156. MR 26 #3207. MR 0145678 (26:3207)
  • [6] R. W. Hockney, ``A fast direct solution of Poisson's equation using Fourier analysis,'' J. Assoc. Comput. Mach., v. 12, 1965, pp. 95-113. MR 35 #3913. MR 0213048 (35:3913)
  • [7] R. W. Hockney, ``The potential calculation and some applications,'' in Methods in Computational Physics. Vol. 9, Academic Press, New York, 1970, pp. 135-211.
  • [8] B. Kredell, ``On complex successive overrelaxation,'' Nordisk Tidskr. Informationsbehandling, v. 2, 1962, pp. 143-152. MR 29 #1736. MR 0164439 (29:1736)
  • [9] W. Niethammer, ``Relaxation bei komplexen Matrizen,'' Math. Z., v. 86, 1964, pp. 34-40. MR 29 #6618. MR 0169368 (29:6618)
  • [10] W. Niethammer, ``Über-und Unterrelaxation bei linearen Gleichungssystemen,'' Computing, v. 5, 1970, pp. 303-311. MR 0312708 (47:1264)
  • [10a] W. Niethammer, ``Iterationsverfahren und allgemeine Euler-Verfahren,'' Math. Z., v. 102, 1967, pp. 288-317. MR 38 #6741. MR 0238465 (38:6741)
  • [11] D. B. Russell, On Obtaining Solutions to the Navier-Stokes Equations with Automatic Digital Computers, Aeronautical Research Council, R&M #3331, Her Majesty's Stationery Office, London, 1963.
  • [12] J. W. Sheldon, ``On the spectral norms of several iterative processes,'' J. Assoc. Comput. Mach., v. 6, 1959, pp. 494-505. MR 23 # B1647. MR 0128608 (23:B1647)
  • [13] J. Smith, ``The coupled equation approach to the numerical solution of the biharmonic equation by finite differences. I,'' SIAM J. Numer. Anal., v. 5, 1968, pp. 323-339. MR 38 #1847. MR 0233526 (38:1847)
  • [14] J. Smith, ``The coupled equation approach to the numerical solution of the biharmonic equation by finite differences. II,'' SIAM J. Numer. Anal., v. 7, 1970, pp. 104-111. MR 42 #7091. MR 0272210 (42:7091)
  • [15] R. S. Varga, ``A comparison of the successive overrelaxation method and semiiterative methods using Chebyshev polynomials,'' J. Soc. Indust. Appl. Math., v. 5, 1957, pp. 39-46. MR 19, 772. MR 0090129 (19:772d)
  • [16] R. S. Varga, Matrix Iterative Analysis, Prentice-Hall, Englewood Cliffs, N.J., 1962. MR 28 #1725. MR 0158502 (28:1725)
  • [17] H. E. Wrigley, ``Accelerating the Jacobi method for solving simultaneous equations by Chebyshev extrapolation when the eigenvalues of the iteration matrix are complex,'' Comput. J., v. 6, 1963/64, pp. 169-176. MR 27 #2095. MR 0152115 (27:2095)
  • [18] D. M. Young, ``Iterative methods for solving partial differential equations of elliptic type,'' Trans. Amer. Math. Soc., v. 76, 1954, pp. 92-111. MR 15, 562. MR 0059635 (15:562b)
  • [19] D. M. Young, ``On Richardson's method for solving linear systems with positive definite matrices,'' J. Mathematical Phys., v. 32. 1954, pp. 243-255. MR 15, 650. MR 0060306 (15:650h)
  • [20] D. M. Young, ``Convergence properties of the symmetric and unsymmetric sucessive overrelaxation methods and related methods,'' Math. Comp., v. 24, 1970, pp. 793-807. MR 0281331 (43:7049)
  • [21] D. M. Young, Iterative Solution of Large Linear Systems, Academic Press, New York, 1971. MR 0305568 (46:4698)
  • [22] D. M. Young & D. R. Kincaid, Norms of the Successive Overrelaxation Method and Related Methods, TNN-94, Computation Center, University of Texas, Austin, Tex., 1969.
  • [23] D. M. Young, M. F. Wheeler & J. A. Downing, On the Use of the Modified Successive Overrelaxation Method With Several Relaxation Factors, Proc. IFIP 65, W. A. Kalenich (Editor), Spartan Books, Washington, D.C., 1965, pp. 177-182.

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 65N10

Retrieve articles in all journals with MSC: 65N10


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1972-0311128-X
Keywords: Chebyshev acceleration, successive overrelaxation, biharmonic equation, coupled harmonic equations, harmonic equations, finite differences, iterative solutions of linear systems
Article copyright: © Copyright 1972 American Mathematical Society

American Mathematical Society