On the equation

Authors:
M. Lal and P. Gillard

Journal:
Math. Comp. **26** (1972), 579-583

MSC:
Primary 65Q05; Secondary 10A20

DOI:
https://doi.org/10.1090/S0025-5718-1972-0319391-6

MathSciNet review:
0319391

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The number of solutions of the equation , for , at intervals of 10 to 10 are given. The values of for which , and for which , are also tabulated.

**[1]**L. Moser,*An Introduction to the Theory of Numbers*, Lecture Notes (Canadian Mathematical Congress, Summer Session, August 1957), Published by the University of Alberta, Edmonton, Alberta.**[2]**V. L. Klee, Jr., ``Some remarks on Euler's totient,''*Amer. Math. Monthly*, v.**54**, 1947, p. 332. MR**9**, 269.**[3]**Leo Moser,*Mathematical Notes: Some Equations Involving Euler’s Totient Function*, Amer. Math. Monthly**56**(1949), no. 1, 22–23. MR**1527132**, https://doi.org/10.2307/2305815**[4]**M. Lal & P. Gillard, ``Table of Euler's phi function, ,''*Math. Comp.*, v. 23, 1969, p. 682.**[5]**Paul Erdös,*Some remarks on Euler’s 𝜙-function and some related problems*, Bull. Amer. Math. Soc.**51**(1945), 540–544. MR**0012634**, https://doi.org/10.1090/S0002-9904-1945-08390-6

Retrieve articles in *Mathematics of Computation*
with MSC:
65Q05,
10A20

Retrieve articles in all journals with MSC: 65Q05, 10A20

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1972-0319391-6

Keywords:
Euler phi-function,
diophantine equation

Article copyright:
© Copyright 1972
American Mathematical Society