One-step piecewise polynomial Galerkin methods for initial value problems

Author:
Bernie L. Hulme

Journal:
Math. Comp. **26** (1972), 415-426

MSC:
Primary 65L05

DOI:
https://doi.org/10.1090/S0025-5718-1972-0321301-2

MathSciNet review:
0321301

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A new approach to the numerical solution of systems of first-order ordinary differential equations is given by finding local Galerkin approximations on each subinterval of a given mesh of size . One step at a time, a piecewise polynomial, of degree and class , is constructed, which yields an approximation of order at the mesh points and between mesh points. In addition, the th derivatives of the approximation on each subinterval have errors of order . The methods are related to collocation schemes and to implicit Runge-Kutta schemes based on Gauss-Legendre quadrature, from which it follows that the Galerkin methods are -stable.

**[1]**Owe Axelsson,*A class of 𝐴-stable methods*, Nordisk Tidskr. Informationsbehandling (BIT)**9**(1969), 185–199. MR**0255059****[2]**J. C. Butcher,*Implicit Runge-Kutta processes*, Math. Comp.**18**(1964), 50–64. MR**0159424**, https://doi.org/10.1090/S0025-5718-1964-0159424-9**[3]**J. C. Butcher,*Integration processes based on Radau quadrature formulas*, Math. Comp.**18**(1964), 233–244. MR**0165693**, https://doi.org/10.1090/S0025-5718-1964-0165693-1**[4]**George D. Byrne and Donald N. H. Chi,*Linear multistep formulas based on 𝑔-splines*, SIAM J. Numer. Anal.**9**(1972), 316–324. MR**0311111**, https://doi.org/10.1137/0709031**[5]**E. David Callender,*Single step methods and low order splines for solutions of ordinary differential equations*, SIAM J. Numer. Anal.**8**(1971), 61–66. MR**0315897**, https://doi.org/10.1137/0708008**[6]**F. Ceschino and J. Kuntzmann,*Numerical solution of initial value problems*, Translated from the French by D. Boyanovitch, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1963. MR**0195262****[7]**W. E. Culham & R. S. Varga, ``Numerical methods for time dependent nonlinear boundary value problems,''*Soc. Pet. Eng. J.*, v. 11, 1971, pp. 374-388.**[8]**Germund G. Dahlquist,*A special stability problem for linear multistep methods*, Nordisk Tidskr. Informations-Behandling**3**(1963), 27–43. MR**0170477****[9]**Jim Douglas Jr. and Todd Dupont,*Galerkin methods for parabolic equations*, SIAM J. Numer. Anal.**7**(1970), 575–626. MR**0277126**, https://doi.org/10.1137/0707048**[10]**Byron L. Ehle,*High order 𝐴-stable methods for the numerical solution of systems of D.E.’s*, Nordisk Tidskr. Informationsbehandling (BIT)**8**(1968), 276–278. MR**0239762****[11]**Preston C. Hammer and Jack W. Hollingsworth,*Trapezoidal methods of approximating solutions of differential equations*, Math. Tables Aids Comput.**9**(1955), 92–96. MR**0072547**, https://doi.org/10.1090/S0025-5718-1955-0072547-2**[12]**Peter Henrici,*Discrete variable methods in ordinary differential equations*, John Wiley & Sons, Inc., New York-London, 1962. MR**0135729****[13]**P. Henrici, ``On the error of a method of Hammer and Hollingsworth for integrating ordinary differential equations,''*Bull. Amer. Math. Soc.*, v. 63, 1957, p. 389. (Abstract.)**[14]**P. Henrici, ``Methods for integrating ordinary differential equations based on Gaussian quadrature,''*Bull. Amer. Math. Soc.*, v. 63, 1957, p. 390. (Abstract.)**[15]**Bernie L. Hulme,*Piecewise polynomial Taylor methods for initial value problems*, Numer. Math.**17**(1971), 367–381. MR**0298953**, https://doi.org/10.1007/BF01436086**[16]**Frank R. Loscalzo and Thomas D. Talbot,*Spline function approximations for solutions of ordinary differential equations*, SIAM J. Numer. Anal.**4**(1967), 433–445. MR**0221756**, https://doi.org/10.1137/0704038**[17]**Frank R. Loscalzo,*An introduction to the application of spline functions to initial value problems*, Theory and Applications of Spline Functions (Proceedings of Seminar, Math. Research Center, Univ. of Wisconsin, Madison, Wis., 1968) Academic Press, New York, 1969, pp. 37–64. MR**0240989****[18]**H. S. Price, J. C. Cavendish & R. S. Varga, ``Numerical methods of higher-order accuracy for diffusion-convection equations,''*Soc. Pet. Eng. J.*, v. 8, 1968, pp. 293-303.**[19]**Harvey S. Price and Richard S. Varga,*Error bounds for semidiscrete Galerkin approximations of parabolic problems with applications to petroleum reservoir mechanics*, Numerical Solution of Field Problems in Continuum Physics (Proc. Sympos. Appl. Math., Durham, N.C., 1968) Amer. Math. Soc., Providence, R.I., 1970, pp. 74–94. MR**0266452****[20]**I. J. Schoenberg,*On spline functions*, Inequalities (Proc. Sympos. Wright-Patterson Air Force Base, Ohio, 1965), Academic Press, New York, 1967, pp. 255–291. MR**0223801****[21]**L. F. Shampine and H. A. Watts,*Block implicit one-step methods*, Math. Comp.**23**(1969), 731–740. MR**0264854**, https://doi.org/10.1090/S0025-5718-1969-0264854-5**[22]**L. Stoller and D. Morrison,*A method for the numerical integration of ordinary differential equations*, Math. Tables Aids Comput.**12**(1958), 269–272. MR**0102180**, https://doi.org/10.1090/S0025-5718-1958-0102180-8**[23]**Blair Swartz and Burton Wendroff,*Generalized finite-difference schemes*, Math. Comp.**23**(1969), 37–49. MR**0239768**, https://doi.org/10.1090/S0025-5718-1969-0239768-7**[24]**J. Barkley Rosser,*A Runge-Kutta for all seasons*, SIAM Rev.**9**(1967), 417–452. MR**0219242**, https://doi.org/10.1137/1009069**[25]**H. A. Watts, -*Stable Block Implicit One-Step Methods*, Ph.D. Dissertation, University of New Mexico, Albuquerque, N. M., 1971.**[26]**K. Wright,*Some relationships between implicit Runge-Kutta, collocation Lanczos 𝜏 methods, and their stability properties*, Nordisk Tidskr. Informationsbehandling (BIT)**10**(1970), 217–227. MR**0266439**

Retrieve articles in *Mathematics of Computation*
with MSC:
65L05

Retrieve articles in all journals with MSC: 65L05

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1972-0321301-2

Keywords:
Galerkin method,
initial value problems,
ordinary differential equations,
piecewise polynomials,
Gauss-Legendre quadrature,
collocation methods,
implicit Runge-Kutta methods,
-stable

Article copyright:
© Copyright 1972
American Mathematical Society