
In Volume I on p. 95, Eq. (11), the power of v in the value of the integral should be $2m + 1$ instead of $2m$.

In Volume II on p. 289, Eq. (13), in the value of the integral for $L_n^{-m}(-y^2)$ read $L_n^{-m}(-y^2)$.

J. C. Nash

Mathematical Institute
University of Oxford
Oxford, England

On p. 837, formula 7.374.7 is incorrect. In the right-hand side, replace $L_n^{-m}(-2y^2)$ by $L_n^{-m}(-2y^2)$.

On p. 841, formula 7.388.6 is incorrect. In the right-hand side replace b^{2m} by b^{2m+1}.

J. C. Nash

493.—F. M. Henderson, Elliptic Functions with Complex Arguments, Univ. of Michigan Press, Ann Arbor, 1960.

On p. 4 of the introduction, the extension of $F(k, x)$ to real $x > 1/k$ is erroneous because of an omitted minus sign before the last integral preceding Eq. (8). This equation should consequently be replaced by

$$F\left[\frac{x_0}{1}\right] = F\left[\frac{1}{(kx_0)}\right].$$

An equivalent and more informative statement is

$$F(k, x_0) = F(k, 1/(kx_0)) - i K', \quad \text{for} \quad x = x_0 > 1/k.$$

In Part II the values indicated as those of y in the tables of $x + iy = cn(u + iv)$ are, in fact, the values of $-y$. The same correction applies to the tables of $x + iy = dn(u + iv)$ in Part III.

J. R. Philip

CSIRO Division of Environmental Mechanics
Canberra, A. C. T., Australia