On -free sequences of integers

Author:
Samuel S. Wagstaff

Journal:
Math. Comp. **26** (1972), 767-771

MSC:
Primary 10-04; Secondary 10L99

DOI:
https://doi.org/10.1090/S0025-5718-1972-0325500-5

MathSciNet review:
0325500

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let denote the cardinality of the largest subsequence of , which contains no numbers in arithmetical progression. (Such a sequence is called -free.) is computed (on an IBM 360/65) for , and various values of to about 50. The results support the old conjecture that for all , the limit . The results , and are obtained. Several cases of a (disproved) conjecture of G. Szekeres are verified, including .

**[1]**F. Behrend, ``On sequences of integers containing no arithmetic progression,''*Časopis Mat. Fis. Praha*, v. 67, 1938, pp. 235-239.**[2]**P. Erdös & P. Turán, ``On some sequences of integers,''*J. London Math. Soc.*(2), v. 11, 1936, pp. 261-264.**[3]**A. Mąkowski,*Remark on a paper of Erdős and Turán*, J. London Math. Soc.**34**(1959), 480. MR**0106866**, https://doi.org/10.1112/jlms/s1-34.4.480**[4]**Leo Moser,*On non-averaging sets of integers*, Canadian J. Math.**5**(1953), 245–252. MR**0053140****[5]**K. F. Roth,*On certain sets of integers*, J. London Math. Soc.**28**(1953), 104–109. MR**0051853**, https://doi.org/10.1112/jlms/s1-28.1.104**[6]**Klaus Roth,*Sur quelques ensembles d’entiers*, C. R. Acad. Sci. Paris**234**(1952), 388–390 (French). MR**0046374****[7]**R. Salem and D. C. Spencer,*On sets of integers which contain no three terms in arithmetical progression*, Proc. Nat. Acad. Sci. U. S. A.**28**(1942), 561–563. MR**0007405****[8]**R. Salem and D. C. Spencer,*On sets which do not contain a given number of terms in arithmetical progression*, Nieuw Arch. Wiskunde (2)**23**(1950), 133–143. MR**0033294****[9]**E. Szemerédi,*On sets of integers containing no four elements in arithmetic progression*, Acta Math. Acad. Sci. Hungar.**20**(1969), 89–104. MR**0245555**, https://doi.org/10.1007/BF01894569**[10]**S. S. Wagstaff Jr.,*On sequences of integers with no 4, or no 5 numbers in arithmetical progression*, Math. Comp.**21**(1967), 695–699. MR**0222009**, https://doi.org/10.1090/S0025-5718-1967-0222009-2

Retrieve articles in *Mathematics of Computation*
with MSC:
10-04,
10L99

Retrieve articles in all journals with MSC: 10-04, 10L99

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1972-0325500-5

Keywords:
-free sequences,
arithmetic progressions in sequences

Article copyright:
© Copyright 1972
American Mathematical Society